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A s n1Ji-d fiecLcn m y~is is developed for the elastic i,-.:erbay

buckling of ring-stiff eed cylindrical shells in which the influence of the

rings on deformations before and during buckling is considered.

Tests were carried out with a machined, ring-stiffened cylinder

(BR-4B) subjected to external hydrostatic pressure. Collapse was initi-

ated by elastic asymmetric buckling of the shell. Strain measurements

taken during the test demonstrated that the Southwell method of determin-

ing buckling strength nondestructively is applicable in the case of inter-

bay buckling.

The results of this and three other tests of machined cylinders ar-e

in good.agreement with the theory. While the'Von Mises theory is inac-

curate for closely spaced rings, its continued application for estimating

elastic buckling strength is probably justified since it is always conser-

vative and can be represented in a simple form.

'INTRODUCTION

OF
One problem in the field of pressurm -vessel design that has been of

particular interest for many years is the elastic instability of thin cylin-

drical shells under hydrostatic pressure. In practice, it is the buckling

which occurs between closely spaced ring stiffeners as shown in Figure 1.

Despite the considerable study which this-pr-o4em has received, some

additional investigation appeared needed in at least two areas. One of

these concerned experimental work with short shells since a thorough

evaluation of theory was still lacking. The other involved the analytical

stud!3 of the influence of the Ai g ci ie buckling strength. Several in-

vestigatori have considered this effect, but in each case it seemed that

the treatment has been either approximate or incomplete.

As part of a continuing program at the Model Basin to study the

phenomenon of shell instability, effort has been directed toward eliminat-

ing some of these deficiencies. The present report, which gives the re-

sults of this effort, is divided into three sections.



The first deals with the deve-

opment of a small deflection analysis

which accounts for the restraint pro-.

vided by the rings. This is done by

expressing the deflection bcth bc1forz

and dilring buckling in trigonometric

series form and obtaining a solution

through the use of energy methods.a.

The special cases of simple and

clamped support are also treated.

L. addition, the si~gnificance of in-

cluding the energy associated with

bending stresses developed prior to

buckling is examined. Much of the

work is baseq on relations derived

_iwn - ~ndirp(A -

The bccond section describes

tests of a machined cylinder desig-

E nated Model BR-4B. This includes

a discussion of-strain data, buckling

strength, and mode of collapse. The

applicability of the Southwell method

FS sfor determining shell buckling strength

is also examined.

In the third section, the present analysis and others are evaluated

on the basis of the test results of Model BR-4B and of recent tests of

three other machined cylinders.

BACKGROUND

In view of all the effort that has been devoted to the study of the

elastic instability of cylindrical shells, it is rather curious that there has

yet to be a thorough confirmation of theory by experiment, at least where

closely spaced stiffeners are concerned. Surprisingly enough, this has



not been the case with the problem

of general instability wherein both

rings and shell undergo extensive

deformation3 (Figure 2) It is due

largely to the theoretical work of

Kendrick ,' among others, and

a rather extensive experimental

program conducted at the Model

Basin 4 , that the elastic general

instability problem has forall prac-

tical purposes been solved. This

progress is even more striking when

it is realized that no rigorous ana-

lytical solution was undertaken

prior to the work of Salerno and

Levine? in 1951.

-_. , ihn, a u for the

S nt1, 1r P Z S a problem -1ihA

would appear the simpler of the two

and which has been studied over a

much longer period? Basically it

is the disparity which has persisted Figure 2 - General Instabiity

in varying degree between the phys-

ical conditions prevailing in the ex-

periments and those which have received theoretical consideration..

First, let it be said that theoretical development has lacked neither

variety nor distinction. The case of a simply supported shell of finite

length under radial pressure was first treated by Southwell in 1913.8

XThe next year Von Mises presented a more exact analysis,9 which he en-

tended in 1929 to include end pressure. 10 In that same year, Tokugawa" l

published almost identical results to those of Von Mises. While rightly

regarded as classics today, these analyses are not completely rigorous

1Refcrences are listed on page 101.
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in that they do nct account for the influence of the boundary conditions on

deflections prior to buckling. This influence is unimportant for relatively

long shells, but it may not be for short shells such as are embodied in

submarine hulls. Recognizing this, Von Sanden and T6lke 2 in 193Z pub-

A16 L )Ilp-ehen~iVe P'PA cX IItC buckling oi sheis whereli tie ellect

was considered. Their results included not ony the case of simple sup-

port but that for finite stiffening rings as well. In this latter case, how-

ever, they assumed that during buckling, the rings merely provide simple

support. Using a different mathematical approach, Kendrick 2 also ob-

tained a solution to this problem. While neither analysis included the

rotational restraint which the rings preisumably would provide during

buckling, the results showed that buckling pressures for short ring spac-

ings can be significantly higher than those given by either Von Mises or

Tokugawa.

Salerno and Levine l .' 14 were apparently the first to include the in-

___~ a, fl eo stift,=aia one the- buint defornlt~Mo. Ufkuatl,
computing tho buckling pressure, they neglected the prebuckling defor-

mations altogether. Because of this shortcoming and because of certain

errors in their energy expressions, the analysis is not considered cor-

rect. Others, notably SturmIS and Nash,16 investigated the consequences

of having stiffeners which provide full fixit'. The resulting buckling pres-

sures were much higher for closely spaced stiffeners than for the case of

simple support, even though the effect of the boundary conditi--ns on the

prebuckling deformations was neglected.

Still others have studied the possibility of "snap-through" buckling

at pressures much lower than the small deflection analyses just mentioned

might predict. Notable contributions to this development of large deflec-

tion theory include the work of ronnell,17 , 18 Langhaar and Boresi, 19 and

Kempner and Crouzet-Pascal. ° These studies have shown generally that

the phenomenon of "snap-through" in cylindrical shells under hydrostatic

pressure is possible and that the associated buckling pressure is some-

what influenced by geometrical imperfections. Experimental studies by

Kirstein and Werik 1 have borne out these conclusions. So far, however,

it has been difficult to assess quantitatively the imperfections present in

test structures. It has also been recognized that such imperfections can

4



have an important influence on the scressen existing in the shell prior to

buckling. Sturm, 5 Bodner and Berks,72 and Galletly and Bart, 73 for ex..

ample, have shown that as a result of irregularities in circularity, the

stresses can be so greatly increased that inelastic collapse can occur at

d pretsure well below thac which elastic buckling tieory would prdicL.

Inelastic buckling, which is frequently the mode of collapse for effi-

ciently designed shells, has also received some attention in recent years.

For example, the work of Gerard, 4 '2 5 Lunchick,Z6 NottZ 7 and Reynlda o

have shown that inelastic buckling strength can often be predicted with

reasonable accuracy even though the complexity of the problem virtually

precludes a rigorous aiialv. . These investigators, it should be noted,

have had the benefiL of much more experimental data than has been avail-

able for the study of elastic buckling.

It is because of this lack of data that a thorough evaluation of elas-

tic buckling theory has. not been possible. Most of the elastic data from

__-Windenburg'usatudies, 29 for example, have beehAn. the longa e lI ra -

whereas data for short shells, i. e., those with closely spaced stiffeners,

are extremely limited. This results from the fact that the source of much

of the available data for short shells has been proof tests of pressure ves-

selo designed for structural efficiency rather than for the study of elastic

buckling. Such structures are so designed that collapse rarely occurs

before stresses have exceeded the elastic limit of the material. Conse-

quently, tests of this nature seldom procvide pertinent data for the evalua-

tion of elastic buckling theory, although they have sometimes been used

for that purpose. On the other hand, some cylinders specifically designed

to buckle elastically have apparently suffered premature failure by reason

of geometric imperfections, residual fabrication stresses, and other un-

controllable factors. Tests of Models BR-1 30 and BR-5 31 conducted at the

Model Basin are examples in which this problem was encountered. How-

ever, even if all these experimental difficulties had not existed, the vari-

ous theories then available still have not considered realistically tle

actual conditions existing at the shell boundaries.

Nearly all the available data have come from tests of ring-stiffened

cylinders, yet most analytical solutions are based en arbitrary assump-

tions regarding the boundary conditions which the stiffe ners impose on

5



the shell. One remedy would be to attempt to duplicate in the laboratory

a set of idealized conditions as assumed for the theory. However, the

best one could do with such a procedure would be to establish the applica-

bility of a certain formula in the special case, for instance, of simple

support. The question of what formula is reliable for the case actually

encountered in practice would still be unanswered.

The recent successes in the studies of general instability using

machined cylinders of high..strength steel 4 's strongly indicate that the

problems associated with imperfections, insufficient yield strength, etc.,

could be overcome and that elastic instability in short, ring..stiffened

shells would be experimentally nzasible. It seemed reasonable, there-

fore, to undertake an experimental study using a machined, ring-stiffened

cylinder designed to collapse by elastic instability. At the same time, it

appeared worthwhile to explore the possibilities of an analytical approach

whereby the boundary conditions imposed by the rings could be treated

more realisticallyt

PART I - THEORY

GENERAL ANALYSIS

F The structure under consideration is a circular cylindrical shell of

infinite length reinforced by regularly spaced ux~form ring frames, as

shown in Figure 3. The shell is assumed to be isotropic, and its thick-

ness is small compared to its radius so that the problem is restricted to

two dimensions.

There is ample experimental evidence (e.g., Figure 1) that under

hydrostatic pressure, asymmetric (lobar) buckling occurs in the mode

shown schematically in Figure 4. Such a pattern, it will be seen, repeats

itself at every other frame. Consequently, in computing the total poten-

tial of the cylinder in its buckled state, it is convenient to carry out the

calculation over any two adjacent frame spaces.

The total potential Ur of the system is defined by

U T = u s + Uf-w [1]

6
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Figure 3 - Stiffened Cylinder and Figure 4 - Asymmetric Sheil
Coordinate System Buckling Mode

where U s is the strain energy of the sh'ell,

Uf is the strain energy of the frames, and

W is the work done by the external pressure.

Referring to Appendixes A, B, and C, where these three quantities are

derived, we have for the total potential

-Li -7, uz
EhR. 7 -z z Z"U - . + U w + + + Z x
TUJ x ,U -

+ )+ -- x + w)

+- +(VX +')(wxN'-ux vx. u")] dxdeR uA

[2]
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+ E 3  ZL 4 ''2x

+2 2 2 I
+N +M ZN,,, IUn -+M XM .

+ ZvRw,~0 + 8 4- R,( 0 + M N + M N0- --

rv 22 0

+ i)R,+ 'LX) +~v Mo? (,N 1 + MNO

R XJ

. 2 _ 2

eA 0

ERA eN0  M +M '02 +'N- MN, 2
- RRe~R2 AR 2  R21R UoO

22
ZN 8  N+ XI N MN ,q)

2 -R -R J 2 [2]

X - (Af continued+ X
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El 1

Z(R+e) J .x R+e R+e - L0 [e
i=0 o ~

+ .- - w i r 0 -TT -2 T. ?T 1.- WR+e XOJ 1 X R+e' XIJt " de
-' = iLf

I

+ 4l)(e) [(Rwx0 + u) 2 - 2 R(Rwx0 + uO)(vx8 N

+ vx Ne)] dOx,-- iLf [2]
continued

pR2 , fZLf 2 7ir LW+ +U(M+ + ,2 V) xd2 J J R~u+ ~ M~ R 2 (Z vdd

oo +' w. +

-..- -- 2 .. A., . ,--A -V

M R

N We-V
R

and all terms beyond the third order in the displacements have been dis-
carded. The quantities appearing in Equation [Z] are defined as follows:

E is Young's Modulus,

h is the shell thickness,

R is the radius to the shell middle surface,

Lf is the frame spacing,

L v is Poisson's ratio,

A1  is the area of the frame cross section,

IxG is the moment of inertia of a frame about the centroid in
its plane of curvature (Figure 3),

9



IzG is the moment of inertia of a frame about the centroid out

of its plane of curvature (Figure 3),

e is the distance from the frame centroid to the neutral axis

of shell (Figvure 3).

K is the torsion constant of the frame (Appendix B),

p is the hydrostatic pressure (positive outward),

0 and x are the. angular and axial coordinates (x positive to the
F''',' ,. l i ", r • t . 'J , t ll ' : , {

right), and

u, v and w are the axial, tangential and radial displacements, respec-

tively (u positive to the right, w positive outward).

The subscripts indicate differentiation.

During buckling, the system passes from an initial or prebuckling

equilibrium state, in which all deformations are axisy metric, to the

=bucklid asymmetric state. T'ae change'in total potential accompany g

this process may be called AUT. The final buckled state will be described

by the deflections uF , vF and wF'Which are theo total of the displacements

developed from the initial app.ication of pressure and are given by

uF = i(x)+ u(x,8)

vF  v(x,8) [3]

w F =_ (x) + w(x,6)

where u, v, w are the buckling displacements and 5, v are the initial or

prebuckling displacements, being axisymmetric in form for the case of

hydrostatic pressure, and satisfying the conditions

(zx:': (Ux)xL

(W)x =  (O )  [4]

(WX)XO = (Wx)x=Lf = 0

10



-To find the change in total notential, we replace u, v, w in Equation [2]

by UF, vF, wF and subtract the total potential for the initial equilibrium

state. With only linear and quadratic terms retained, the result is

fZLfZ7 2 7r
AUT EhR IIf 'A U z + M2 + 2vuxM+( vx +U

2(lI v2) .

+U 2( "-) +N2 -2I V~ dx 7)

2
Fv[ + Nzo- ( W -"u= .r vux x -

--" N 6 +x) ( v)(w + Wxe)k x + ()-V wx[Zx
I2

x )

+ WN[vw +(I"- v)N(v + M + N. wj -ii. [vZ+ w

dx dO

rk3 2La7'

(2 JOJ tR-w"X+Ni+2v R w. N. RX+we

--- 22v(R2 Rw N0 ) -(I - v)(RN +

x Lwxi ue4 , W Vk(, W) 0

-RN 0 oux) -)(R Nx + wx,))(2 uxo+ N)] Z R [v x2ux wxx

+Nv, ~ +0 7x wvue2+ M N+ MN LE+eu

+ (vx ( + (ZX wx e) - +ii [R2 (U-N

22
_V ). -V +N u~+i) (?.RN + wx O) 25x[R}w~

[w~o 1v) (N )22Zi, 2 RxWxx + (1ewJ d2 d

,[5]
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ER2 A 2 7r -~Ue ~ Zw
M MN + (U N j+ -e 1 ZMN~

2(Rfe 0I Re RZ R2
ioO

e -- + u 0  4 Mx N + dO

R T-uO -- -4 6 N-0 2 R+e dx= iLf

E (IxG+AfeZ) f02 N + ]rR 2

+[1e(wxo + N)+ e()

i=O X ILf

2Re w --- eW O) d9

i=0 x= iL

EK 7 (Rw,+ ua)2 dO

5, + M) + u oni udfT 0 x' R u x 1dd

where M and N now involve only the buckling displacements v and w.

As explained in Appendix D, d and F can be expressed by the closed

form solution of Von Sanden and Guinther 3 Z for the linear case, or by the

more exact nonlinear solution of Pules and Salerno, 3  However, as can

be seen from Appendix D, manipulation of either of these solutions could

be extremely cumbersome. KendrickO provides convincing evidence of

this in an analysis of the same buckling problem.

A simpler approach is to express u and w in terms of infinite trig-

onometric series, ab indicated by Von SandJen and T81ke. Iz This has

been carried out in Appendix D with the following results:

- pR2  CO 2Xm(2-v) I' a m coo R- [6]
w Eh -do ()[ R

m = -CD

12



- R 1 - 2V + V(2- v am Cos
UK 2Eh R continued

M=- -CO

where, for the equivalent of the Salerno and Pulos solution,

Xm =Lf

r)I

k L

"-.A-(1+j)+ e am
j m -co

1 1
am 2 p

1+4( + F-)m [i+4( ) )(I

, [7]

r31l-v )1Lf
L R2 h 2

If the presaire terui in the denominator of am is neglected, we have the

equivalent of the Von Sanden and Gunther solution:*

1+41 4[ l~+ 4 (m..)4

This approximate form is found to be sufficiently accurate for the range

of geometry to be considered, particularly since this analysis is not con-

cerned with an examination of stresses and deflections at discrete points.

Appendix D also gives an alternative means of computing am for

the approximate form: rn=-w

a( 2 coshP - cosp

m= -oo

*A small discrepancy between the series and closed form solutions re-
sults from neglecting t:he faying width of the frame, as explained in
Appendix D.

13



Except for very large values of P, however, the coivergence is so rapid

that the series form is often the more convenient.

Having the necessary Eouations f51 and [61. it is possible at this

point to apply the principle of stationary potential and, through the meth..

ods of variational calculus, proceed to a solution of the problem. The

most rigorous procedure would be to fcrmulate the partial differential

equationa of eq lilibrium and then attempt to solve them. This approach

is rejected here primarily because of the lengthy task which would be in-

volved in obtaining the differential equations. The work of Von Sanden

and Tlke 2 indicates that an exact solution to the diiferential.equations

may be entirely possible, provided the initial deflections are expressed

in their trigonometric series form. A simpler procedure which will be

followed here is to apply the Ritz method whereby displacement functions

having arbitrary coefficients are assumed and the problem of satisfying

the condition for stationary potential ie reduced to the solution of a system

of algebraic equiLtions.

Since the success of this method depends upon the degree to which
Lhe assumed functions approximate the exact buckling shape, it in impor-

tant to choose a set of :unctions which permit a wide variation in shape.

Accordinly.. thn A1.nalrAmAntqrP nrra- . nr-n fnhlnw,*

u coonG. U Cos )

m=l

v =sin nO Vmsi
[-R

Xmx
m= 1

w-here m and n are positive integers and urn, v m w m aehariay

coefficients.

It can be seen from Figure 5 that with appropriate adjustment of

the coefficients, buckling configurations satisfying simple support, r

tial fixity, or full fixity can be generated. It should be recognize

14



although v and w vanish at each

Lk frame for any set of coefficients, no

generality is lost, since this is one

of the conditions which define the
Y

present buckling problem. Buckling

sFMP,* su configurations involving radial and

tangential deflections of the rings

properly belong to the category of

overall buckling or general instabil-

> ity which is outside the scope of this

analysi s.

"' s""' While the procedure for solving

the problem in this general form is

straightforward. considerable effort

would be involved, and the results

S-._ would probably be unmanageable.

--It is desirable, therefore, to intro-

duce simplifying approximations

Fige 5g Configurations where possible before proceeding

Fgure -Buki ,onf rigu further. The sections that follow

interest: partial fixity (finite rings),

simple support and complete fixity (infinite rings). Certain approxima-

tions and methods peculiar to each case are developed which lead to sim-

plified results.

RINGS OF FINITE RIGIDITY

in this case, rings of practical size are considered. The basic

assumption is that the various ring properties are of the same order of

magnitude as comparable quantities for the shell. The basic approxima-

tion is to eliminate the unknown deflections u and v through the use of a

stress function, as explained in Appendix E. The complexity of the buck-

ling equations is Lcrc.by reduced bv a factor of 3. Since this procedure

constraint3 u and v, it leads inherently to a higher buckling pressure than

15



would result if complete generality were preserved. However, other in-

vestigators have found that the error thus introduced is extremely small

for the case of a simply supported shell under hydrostatic loading. The

assumption in this analysis is that the error will also be small in the case

of ring support where the rings are of practical size., In the case of a fully

clamped shell (corresponding to a ring of infinite rigidity), the assump-

tion is not valid for the assumed buckling configuration, Equation [10],

as will be discussed in a later section.

From Appendix E, the equations defining the stress function F(x, 0)

and the deflections are

Ewxx

R

i - VF )

ve . -. rF x - -wXjE11]

vx +O ,V) F
ICA= . Fll

4 284where the operator + 8 _4

V 
4 + R2 8O8x2  R 4 80 4

The remaining unknown deflection w is still assumed to have the trigono-

metric series form (Equation [ 10]). If this series is now substituted in

Equations [ II], the result is

Xx
U = cosnO UmwmCos

m= I
CO[121

v = Eiin nO Y V m i XmX[

\4 1 R6
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-_

CD

cos nO s
m=1

F = nO sin.

m=1

ERZ2
fm [O -{ + ) m][S

Urn = rnm~ -~m

continued

n 0nvM 7l I V) m)Vr I -
- ,

fl1 n2 + 2

When these quantities are introduced in Equation [5], certain simplifica-

tions arise. It can be sccn that

u + f +ffw[u2+MZ+vuxM+( vx+ dxdO2( 1-v 2 V

[141

.. , F I 17Fx F x d

17



because of the periodicity of F in both the x and 0 directions, as indicated

by Equation [12]. Hernce Equation [13] becomes

EhR 2 +M + 2vu x M + + d
Z(1v2) Ux)

2L 2 i[15]
h (VZ F) dxdo
ZE J0  f0

Equations [12] also provide a useful approximation which is valid for

short shells. The quantity N, which appears repeat\edly in Equation [5],

can be written:I
N = = -n sinnO wm  1--- l+ I V) sin

L "'J

2,Since (Pm s 1 and, for short shells, Xm >> 1, little accuracy will be lost

if one makes the approximation*

N e = -SninnO w, Sint -%I r 171

m= I

In addition, it will be seen that several term@ in the frame energy inte-

grals vanish at the frames according to Equations [ 10] and [12].

Accordingly, the simplified form of Equation [ 5] is

AUT~~ ~ j (V2 F)2 dx dO + -~F7 f0Z of0 wi2f" 0 24R(I-v )  O 0

+ wee +2vW W +2(1 - V)w ]_ dx dO

[18]

*The accuracy of this approximation depends not on the size of n but

only on the size of Xrm. Its range of validity, therefore, includes the case
of axisymmetric buckling of a short shell (n= 0, c m= 1) but not that of
asymmetric buck'.ing of a long shell where Xm may not be large.
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EI 2
+ "wx - (ue -ewx e) dO
+2(R+e) R.F. feL 1=eIL

i=O x = iLf

I 7r

EK+ o (Rwxg + uo)2 dO
4(l+v)(R+e)3  o x= iL,

EhR f Lff e w e
S+Wx + 2-P(l V) vx +u

2-1 V+ .. . ,, .,.0 R2
(+ -) We,(w+2

.... e __ .,2, w2x0, 1 dOcontinud

(R~)/ i0 ,2 x2 i 1

i
' ER2A~f o f S 01 " ( 2. e~+ ) +R + euw0RRe d) x A~

RR Jz

2 W1WX~ do continued

iO = X =iLl

E R 2A , 2 7re g w q W -+ 
A b

2 R(R+e) R- (R - (R+ a) 2 i
i=O 0 o Lf

where AUb is the portion of the bending strain energy which involves the

initial deflections. * It is given by

*AUb can be simplified further since fL-r[wO( +- W - )] dG

will vanish on integration.

19



3____ P r Zw22h fl (35w 2 + 00AUb - Eh3  5)wo + Z, ,XW o 1

Z4R(I-vz )0

". w 1-- 0+ ZvRwx

+ + V)WXO uxe + l +)]. Rwx[2R(2 Wxx + w D x +

(1 v ,wexu2 ++Wee v0 +

4.~ CI09,',, RWe))], +' a~xfzW zw dxd 5)V4 2w 0

R JJ

A l series ezpreiona, and [ 21] 5r0 intro-

j duced, Equation (181 ca€n be integrated. In so doing, it should be noted
that because the functions of Equation [ 121 are orthogonal in the interval
o ; x ; ZLf, coupling of different buckling modes (i, j) will arise only
from the fra~me energy and from shell eneargy terms involving products
of the buckling modes with the initial deflections. The resulting inte-

grated form of Equation [ 18] is

AUT 2R; rZw w-, 4.m ,ZR woolI d--2m d
AUT~~ iEj hX

rn= il2 2 1v)~

0:R x5 R2e) copln of difrntbcligmde Jl arise onl

grate for of quat o [i)i

+ '(~t)(~e3i= j~l

Z0



+v -4i v"t~'r X'~j~ AER R+e -+e J

spLf IxG + Afe 2

-ALE tn (20

2 m~fl a 2 Mi) continued

(i on (-a [n -, )

Ir.-2%
where:

oij = +( 1)i

* m =1.+ m+ 1 M[,Omob-)(I + V)4 I +v)]

+

qjj O (L* i - i) [I i - v)(4)i - *,jl 3 )

I aif) =41i~j 14
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AUb ha3 not been given explicitly at this point since it will be necessary to

examine only a few of its characteristic terms. For example, we find

= Eh 3  Z 11- 
dxd0

24R(1 , z ) o J 0 13

[211

2 2 C 2
h n 2 2~

n_ -hnn n ]wwj [aL i+j) ]4 LR2(l-v2) d  A6Wd 26J 1(1"j-

This can be compared with other terms, designated by Z, appearing in

AU T :

rpL 1 rz nZ2(2V 2w,. ,
[' JA 2w ( - A- EA2 [(.J) afi+j) (22]
m= I i=l j=l

h2n 2

It is immediately seen that If << I , which to a reasonable approxi-

mation for thin shells, I, is negligible compared with Z.

E 3  2Lf 2~r- w

12 - 2(l) xx0 dxd

24R(lv 2 ) 0 0  R

rP~f [h?-  -v)
-) 41 Af T6Zl.2J E 5 n2w, jX [ai+j) Xi + 3

i=1 j=1

+ a~i(.-j)(X 1 ")) [23]

h
2

Comparing 12 with Z, we find that 12 is negligible if - (Xi + Xj) X i

and R (Xi -Xj)X i are negligible compared with unity. This will hold

for short thin shells except when i or j are large. In such cases, however,

it will be seen from Equation [201 that a.l(i+j) or a,(i_j) will be extremely

22



small so that all terms in which either appears as a multiple will be

negligible.

A third term is

13= Eh 3  /02Lf0 vRv~ - .,d
1324R(I1-v 2) JO f:Rox dxdO

v 7nL ~ r 12  2O 0

(2- v w.w XiX j [ai() (XL- )

i=l j=l
+ a1(i+,) (xi + Xj)2][4

A comparison with Z reveals that 13 will also be negligible so long as

h2  X, h2 X, X,(1- X.. and (X.+ YX are negligible compared
IlR1 .(I~yZ) lZ jIRZ(l~v 2 )_.

with n2 . As in the case of 12, when this does not hold, the question no

longer has importance.

It can be shown further that cach term appearing in AUb will be one

of these three general tvues. Hence. the entire integral AU, is negligi-

mie. in ouier woras, tne Denoting stresses associa;ea witn ;ne preDuctuing

deformations can be neglected.

Inspection of Equation [20] reveals some additional approximations

which can be made. It will be seen from Equation [ 12] that U m is negli-

gible compared with Xm since 4 m is always less than unity and Xm is

much greater than unity. Hence,

w (Ur +X )w Xm [25]

It also follows that

2 mz 3q mnm 2 2 X

W n +2 rm) wM(n + -2) [26]
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F

If n2 .> > 1, we can also neglect qij so that

x a . -. -Z )j (A - A +) ij - [a Ln- + 2?1 ('i+ ij - qijJ~-D(tj Vh i ij i+j) ) i

i = as( i -j) [ n Z - Z~~~~. (- -a }lij ] j +j [ n Z + 2Xt (X 'j}lj~ v

When i >> j this approximation will not hold. However, as explained

for 1 and 13, the entire expression (Equation [Z7]) in such cases is

-negligible.

We have then for the. approximate form of Equation [20]:

7rELf h w 2 m
I m= 1 Z

AU' 2

ZR R? (' II

I ~~ME I 12RZ I~[~Z+

V D 2D -ZR ew. 2- e X

2(wi=l J=l

+'~ wE xG PY'e2\ 6 X n2-ApLf rR Xi R+6 Ru
+ -(2vwr Xi~uU -2~

+hls f axWymti ukig 22j Us iniay U _Ro. j

4 ~ l (Zlv)1 Wj"ijR M e 4 R R+e I

+p i , IG+Afe CO CO R2

j=J

1TfPLf C +x

WZ (n 2[2812 __
m=l

*This is generally a valid assuniptiort for asymmetric buckling of short
shells; for axisym-metric buckling, qi is identically zero.

24



I wpLf 0

( ( 2 -v) -q wiwj ali.)Ln- 2L(xi x [28
):i=1 j=l [28]

-a"(i+j) [ni + 2Xj(X i +xj )Iiji} 
continued

The buckling condition is now obtained using the principle of station-

ary potential. Minimizing AUT with respect to the wj and multiplying the

resulting equations by R one obtains the simultaneous equations:
7rELfh

a (tUT) 0=h 2X

wJIJ 12R 2(l.-v2)4

P [,,.+6. [X.+ RI.- i.,

R(R+ e) LfhL T W 12-1' L 1  R;T e

KRn~

+ JE w i 6ji ki

2(1+v)(R+e)3 Lfh i=l

+ w-- 1 6j i -U 1 U. [ R ui+.

2~7 ~R+e

I (xG+ Afe 2 1

0Z i=l

+ 2 2 Wi \!(i. +

i=l

- i2 + . [n2 + I.)Z

Z5



where LP is ph
Eh

*corresponding to odd values of i and j are coupled and the same is true of

all even modes, but that no coupling exists between odd and even modes.

This arises from the two consistent definitions

unless i,j odd or i,j even [30]
m i-j) = a (i+j) =

The problem thus can be groupedI into two sets of equations corresponding

to the odd and the even modes, respectively. It is clear that only the odd
modes need be considered here since the even modes lead to buckling con-

figurations of the type (shown in Figure 6) which repcats itself at each
I .. ..... f,- r,,.-lam e. Il -I--Q _o p a ti.-:l g liand ito p a tc l u g lfi c . ..___... .<... -e~t i,.l ~ i!ltl:l ..~il~i- . ; '. ._. .. .- . .

to the odd modes, Equations [29] become:

h2  2 X +n 2 + 2RIR. 2

02+ + (n2.. [
~~..w i 2 RiRe)M

": wlj.wxi+ - ui ) +" fh i x
(1+v)R (1+.!) Li =

R Ri===
2 2  2 U

+ R )J
+ I, ?Li~X - T~wj ai.)n 1 2 Xj)J

'R Af IR' i=1 I=

-a1(i~ [n2 + Ij Ai+ 1-i) 2] i, j i , 3, 5 .... 31]
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I
I

Figure 6 - Even Mode Buckling

If j is given an upper limit J, E!quations [31] can be written in the form

37b.. w + + jW~i [ 32]. , g j I I i9 iwi 0

where:
h z ).

I h2 2Bj 40 3f .. . . .

I ~1ZR (1-V2)~

21: -2 eX 2 eX

'A I ... .. . . +.I

J+ - 2 1 +. 13 L-.h

Xz~Cj n n+-Z

cj~n2 n2
r.'<,u, (ji )+xr -L U,  )},j, (2 -V) 71- "- j xiZ +  + + Xj

R 2 Af I+e

R

+ {a., i4.j) [ n 2 + ji (Ai + x.j)Z]_ a- X~~n+ti(k-,j2+22

[fl ~ ~ _j +.(X+)Jai)[n2 + Ij X i}

ii - 1, 3, 5 ......
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A requirement for the existence of a nontrivial solution to these

equations is that the determinant formed from the coefficients of the wj

nust vanish. Thiq condition ran be written in matrix notation as follows:

{IBI + .,Ci .1X 0 [33]

where:

B +bi 1 , b 1 3 , b 1 5 , ........ b

b 3 1 , B 3 +b 3 3 ,

[B] b B +b 5

* I

b ilB
3  + b~~I

CI+ Cl 11 c13, C15, ........ c l

c 31, C 3+ C. 33

Cc = 1~, c5+C 551,
[C] C;C3 +CI

* IL j I j+ cJJJ

WI

W3

1
[ x]= w5I

Z3



Both [B] and [C] are symmetrical matrixes. The equation has -+_2. real
2

roots, all of which are negative, since pressure was defined positive when

eiernai. 0i these roots, che one tyn) whore aosoijute value is least defines

Pn, the buckling pressure for~n circumferential lobes. Since n is an arbi-

trary integer, it is necessary to obtain Pn for several values of n until the

minimum, or critical pressure, Pc is determined. The degree of accuracy

depends, of course, on the magnitude of J. As J increases, Pc should con-

verge toward a limiting value,

While the solution of Equation [ 33] appears reasonably adaptable to

a high-speed digital computer, it becomes unmanageable for desk calcula-

tion if J is much greater than 5. To overcome this difficulty, an approxi-

mate form has been found whereby the computational task is considerably

reduced. With suitable rearrangement, Equation [ 32] can be put in the

form:

(13 + 41C )w +j __'Wu +i= 1 irn 1'jj 3J~

where B and Ci are as before defined for Equation (32] and

K nz+ -2 " .... I Z

+ e+ 3j Jf U

' ~ ~ ~R(l+)R Lf )Lh

R K). xG+A ,2

j ~~~ H =e3 j 1-(n -1)] +n2 Uj + (2eln Uj RR (I+ .) LLfh + R +

RR

* d.l) .1 a.i+j) n2 ji ( i + ] 2 [r)2+ Pji(A; .4j
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To simplify the equations, we notelect all the dji for which j and i are

unequal, so that Equation [34] becomes

J j

Djw + Gj Z ,vii+ Hj ZwiUi = 0 j,i= 1, 3, 5 .... j r35]

where:

Dj Bj + 0CG + d jj

S - aj(n Z + 41 X3)- n"]dj 2j

It can be seen from Equation [8] that the approximation is not unreasun-
able, Because a. decreases rapidly with increasing m, most of the a,.

will be negligible. It many cases, it would, in fact, be necessary to re-

tai a o only. A more conclusive test of the apprx imatbA t hlw 6iY :  -

comparison of numerical results. Since am approaches zero more slow-
ly as [3 is increased, a demonstration that the approximation is valid for

a large value of p should be sufficient proof of its validity for smaller

cal example.

With Ajj expressed by Equation [Z0] and n 2 replaced by j

a more concise expression for D is obtained:

D B + [X2+ n-2- (2 -v),n a(Il+ 80 .2) 36

The advantage of the form of Equations [35] over that of Equations [32]
can now be demonstrated. With the stipulation that is such that all Dj

are different from zero, one can multiply Equation [34] by Xj/D. and

carry out a summation on j from 1 to J:

J J .T J

21 i~=-1 i-I
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A second equation is obtained by multiplying Equation [35] by Uj/Dj and

performing the same summation:

U 1++5wj>, i = o 138 ]

Zwi [1+ Di + Di w3
i=l 1 ~ i=1 1=1

The unknown coefficients wi are eliminated by combining Equations [ 37]

and [38], and the result is a 3ingie equation,

H -- "iJ+ i - X i = [391
+ i=l D=1 i=l

which can be solved by plotting- the left-hand side versus tp . Such a plot

w ill hav,.r - zern r.tP ntc , - , - = , -,nt r'.', = 'k , = th c-, , -;u i n , n ja n

equal number of asymptotes corresponding to the vanishing of each of the

Di . The root whose absolute value is a minimum will lie between the first

two asymptotes (i = 1, 3). As inthe case of Equation [33], it is necessary

to try several values of n until the critical pressure pc is determined.

The accuracy of the result will, of course, improve as J is increased.

In the case where an initial value of J has been found to be insufficient,

one can proceed to the next succeeding J (i.e., increase the order of the

equations by one) w.thL far less labor than would be involved when working

with the matrix, Equation [ 33].
\

SIMPLE SUPPORT CONDITIONS

The special case of a shell having regularly spaced simple supports
41instead of finite rings can be obtained quite easily from the general equa-

tions. For this case, the conditions are

IzG I xG = K = 0

Af =

w = w 0 a tx= 0, Lf [40]
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w.O [401Fam continued

2 (cs.1P- if pressure term' in A a

P~ ~'~'~ ~ "'~~ / be neglc;ted-

Substitution of these relations directly into Equation (32] will not lead to

the correct result since some of the terms in that equation have been mul.-

tiplied by Af, and this would be equivalent to dividing by zero. Instead

we return to Equation [ 18] and note that because of the relations in Equa-

tion [40], all frame integrals in which i appears as a multiplier as well

as those multiplied by IzG' K and kG will now be zero, It is then evi-

dent that Equation [34] for this case will reduce to

j0
+ Cw W 0+4i

[w,+ . ..- _._. w - . .. .. . .. .. ..

where the Bj Cis and dji are defined in Equations [32] and [341. This

equation can, of course, be solved in exactly the same manner as Equation

Equation [ 35], one arrives at a simple linear equation for this came. That

is, if all d-j are neglected where j and i are unequal, the resulting equa-

tion has the uncoupled form:

.Eh [*2 k
Bh TZ -- - RZ' z *  - 4Eh P4E
B. RZ (1-Xj

2 +

This solution* gives a minimum buckling pressure for j = 1, which is the

*It may be of some interest to compare Equation [42] with the equiva-

lent solution of Von Mises (Eq.atio'- [8] of Reference 29), which in tho
terminology of this report is:
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firet asymptote of Equation [39] with i1 set equal to on

It is now poseihle to find the value of n for which will be a mnini-

inun S in Mqua~ion 41,p will be CffC-

tively niini ized by setting &pn/d4 euai. to zero. The repulting ep.qi-
tion isr

*(Footnote continued from preceding page)

lZ x4Lh XE h + I.. .

12R (1-V

Pn X 2
2.

Thi#-1*rmul is based onh* &MMth.z
no afetth-peiakn c ton.tiU -The Von Mi -- pre si~ W ill-,

in gener l, be less than those given by Equation [4Z ], except where
&,1 + 8+1) > 1. The two solutions are identical fur P > 1, where ' Ti ap-
proaches zero, but are-not accurate in this range, For such a case,
Von MI-ses fo^mu--,o r~ 0, ta...ff 29 ahould '- us

___ - d* A& WAUU LW UDWLU.

A comparable solution is that of Von Sanden and ITOlke l z which, for
the case of simple support, can be written

MAi 2 +
R1

1ZR (1-VA4

p =

2X, Z [3( -v

Pcosh Co242 ]
1C sinh + sin

In deriving this formula, Von Sanden and T61ke took into account the ef-

fect of the boundary conditions on the prebuckling deformations. However,

because they did not use the exact Fourier coefficients for w, their equa.-

tion is not identical with Equation [42. of the prcsent analysis.
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I 41 - (I . -- )-(( ai - 2 ) + 4ya1 0, (3 - 40P) + I

4 \[431]
LKI -al)](j .Z + 4yajcp1 + 1

h'X 4
1 ~7T

whecr' v s (2-v)_ and has been replaced by Equa-
1 2 { i - v )  4 P 4 "

tions [42] and [43] can' be conbined in such a way that the foll.owing re-

sult is obtained:

P(R)2 72 f [441

p2 ~2  (1.<2 1 - 10 -a )l. \4v; +1 I

n .2_
where p_ is the critical buckling nressure. The nnantitv ,"-. -- is

thus represented as a function of 13 only, as €! assumes its critical value

defined in terms of P by Equation [43]. Since this equation cannot be

solved explicitly for a system of plotting was used to obtain 41 as a
nLf

graphical.function of s, shown in Figure 7. A plot of versus ,
7rR

OA- \.5 '" asA-EVien(

• ~~~~~ ~ O ---- .- A ,,.,

I I
C-4

0 l 2 s 4 7 $ I4 0 a 3 4 5 6 7 e 9 10

Figure 7 - €1 a.s a Function of P Figure 8 - n as a Function-of

for Simple Support (v = 0.3) for Simple Support (v 0.3)
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obtained directly from Figure 7, is shown in Figure 8 together with a corn-

parable curve obtained from Windenburg's Equation [24] * of Reference

29, based on the Von Mises solution. It should be noted that according to

' iquation [43], the e-ondit;ion for axisymnet-ric buckling .51-, . n = 0)

oc'.\1rs where the value of P is approximately 1.807. In cases where r is

less than 1.807, Equation [43] has no physical significance, n being zero

for all such cases. The plot of Equation [43] in Figure 8 shows that as

is reduced, n does not increase indefinitely. Evidently, it attains some

limiting value after which it decreases until the axisyr, metric condition

is reached.

With appropriate values of 40 determined from Figure 7, a plot of

Equation [44] was obtained and is shown as the solid curve of Figure 9

Le~

SI k. RI II I I I I I I I... i 7...T I" -T T --

SI .
- --

,,-' --s OAM I iArwe- -

A. I !, " ... .. ------r- ¢ ... ... - _ ,. i.. ...------- --- 11 1 1 11....
I A. -~ 1C ~~

Figure 9 Brklinv Presqure as a. Function of" fer

Simple Support (v = 0.3)

* nLf
- 0.7704-
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where c R is plotted P.9 a function of P. Also shown is a curve for

axiiynmetric buckling ropreacnting the well-known equation

.. .. ....... .... ...... 4 5 1
NNr Z

S for < 7r This equatioa is readily obtained from Equation [4?J -. n is

set equal to zero and is the eaxne as that for the buckling of a cylinder

under end thrust 3 where the length of i ftull longitudinal wave is equal to

ZLf. It will be seen that the two curv,.s in trsect at the point 1.807,

(R)"- = - 1.315. Since Equation [45] is not applicable for P >1.807,the

curve is shown dashed in that region. Similarly, the curve of Equation

[44] is shown dashed where P <1.807. Figure 9 also includes a plot of

the. familiar equaltion of 1,ndenburg29 (shown dotted), often referred to as

"EMS Formula [l0].1 This in an ap maetk a 11e tOAL ." thc o_

Mises solution (see earlier footnote) in minimized form which, ixi the ter-

minology of this report, can be expressed by*

This equation and all three curvev of Figure 9 are hasid on a value of v of

0. 3. Equation [46] is more conservative than Equation [441 in the low-A

end of the asymmetric -buckling range because, as was pointed out in a

previous footnote, the Von Mises analysis neglects the effect of boundary

conditions on the initial (prebuckling) deformations.

.It should be mentioned that the "beam-column" effect represented by

the factor P/Pm appearing in am was found to have a negligible iDfluence

*The formula is better known in its original form:

Z .60 OR_

-. , 5 )
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on the curves of Figures 7, 3, and 9. The approximate form of Ccqustion

[401 ia, therefo~re., siffiriently .iccur: te, anti was usna in the construction

of the, ctirvcs.

RINGS 01' INF1NIEP RIGIDITY (CLAMPEDM SUPPORT CONDIT!ONS)

Another sopeciai cave oi some intf-rP.t is5W~1 o4 a i ht i' Ahaving ii

nitely rigid rings. As indicated previously, a sohitionr '1-1 this case cannot

be obtained from the equations for finite rings by letting the fianmc riigidi-

tien become infinite. This in because the use of the istress function approx-7

imation has imposed certain coknatraint~j upun u and v which can give rise

to serious errors when the frame parameters become very large. It is

preferable instead to proceed frown the more general Equation t15], allow-
£ ing full variability of u and v (consistent with the boundary conditions) as

well as ox w. Since the shell is now fully clamped at regular intervals

against any deformations, the boundary conditions are*

W=W=V=WX~u8 =O. at x=O,L1  147]

£ *01 -1 L 19.

"it:-- * ;IWx.'U1U UU %;U W Z Lirtr W4

M= -wD

21 (cshm cos if pressure terni in a1 can be

The effect of in-pouing the conditions of Equation [47] in to cause all

frame integrals in Equation [ 5] to vanish. U it is asurumed as before that

the bendingy energy AU b involving the initial deflections can be neglected,

Equation [5] becomes

"Tes,, condition-g permit axisymmetric translation at tile boundaries.
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*±+a EhR I + V w + i - iAT - - - - + -..... - --Ux ' ---- dx dO

-I - R +2 v u. ,x

Z4R(l-vZ ) " [Rw,+ ()+ 0VW(W
0 o+v 0 )

(w. (2W+ vx)2 dxdO

EhR +iv Uw juo

[2 "' (we) +(o  - ( ) + 2 Ux wv +.)

) "1 ' , ) x x R ) } dx d e

148]

W+ -o + v

It will be assumned that the huckling diB ~lacements can be represented by
Equation 2 0+:

U)

cos nO Z u~ co(X '

R COB

rn=1

v = sin .O v m sin [101

m~1
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Before proceeding with the integration, a few assumptions can be made

which simplify thke results, considerably. 9T.ese are as follows:

Wo' >> V,

2 7T

J d. R ,.od9 I u9 v.r dO
C))

[49]fo wf6 vd f ° o,.
0 0 0d

f wZd ,>> v dO

The ba~is for theme conditions is the assumption that the relative orders

of magnitude of irn, vm , and wm can be estimated from the results of

the stress function approximation (Equations [121). The assu.mptions iin

Equation. (4]1r cp2~
t rough [27]. and are -ad on--te fact- that i n sigl -- o ed.

with n and X. for short shells. If the, small quantities in Equation [49]

are neglected, Equation [48] i reduced to

,,UT = ( W""1" e)('w )(u (--]

e.1 z i.r w +1
A E . -o ) + 2 v u,+ - (-+v2) +(l ( " + , O)] " Jx

T- 2  + i U2i0 dddO2(l-V ) 0 R 10k'

3 ZL 2fl ,' , ,}
Eh f- w 2 .0 (2--9 dxdo

+ Ro o w +  W\...-7... "7." ] ~ O[o

24R(Iv') 9



When the series expressions, Equations [6] and [10], are substituted

into Equation [50] and the inttegrations are performed, the re~.ult is

X - 2 VUA (W+ nv )+ -(vmXm- nu)

Eb L rn rrrnl ~~ m
in=!I

(m+ m +~ 11m

J24R2 9L

M=1 M~

L -V

+ +W [R+Jaj 1 j+X X~j~.~Cv~Jni

2 2 'Xr-n UrnhwL1 nrn
whre orcnvninete qatonhs en ivdd=y-i-

watisfed bor cqon[101 the conition s oen anidd byrqur

rA'1= M."

G)'

* ~ 'T 1 ITU

rn. i n=

or
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FOD

[531
I~'W mXZ x - l'~ i~ iz

m ,J m z = w2. . -2M
m~l m= I

Thus summations of the odd and the even terms must vanish separately.

The problem now is to arrive at a stationary value of the change in

total potential, Equation [51 ],while at the same time satisfying the four

conditions of constraint, Equation [S3 ]. This can be done through the

use of the Lagrange multiplier method which requires that the expression

T 1 - R ( - v )t I C. ,TT' )-R ATT_- 4. r ., ,
iEh I, --- ' 1" -149 .. -Zm-1 I - .. "ZM-1I

m~l m-I

+ 13 U2m. + a4 2 W2MX2m

m=l m=l

be stationary, where the i's are the unknown muiltipliers. The require-

ment gives rise to the equations

eu O - _[
-i- = u =7=F

which can be written explicitly s follows:*

a -aA. u. + B v + C w1 (1 +0 3 0

j=: I
[56]4The quantities designated by A, B. C.. etc., shoulci not be conf"ler

with other quantities appearing earlier in this report. which bear thf.-: same
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B u. + D' v. + Ej w. + S,.w= [6

c~ju. + Ejv + Fj wj + + ej.,v, + V'fij W

j~ jI4 + _~
+ {' [.

-J - 2

E n

F -+--- (z + )z"+ -V4n

-i (X + xIv~( 4 #1

C~~4 rk T{co (a(+)X+[n(1-v2-)qj>j]

+ a1( J)X- ) [ni2 (I- + 2 X~

Vi -j

ii 2 7121 0 v2) f. i al al

4Z



It will be seen that once again the coupling conditions on the odd and the

even modes are in effect because of the coefficients multiplying the a's

and the definition of am. Thus Equation [56] represents two systems of

equations corresponding to all odd and all even values of j and i. As be-

fore, only the odd-valutd system is of practical ihLtjesL. If j and i are

given an upper limit J, the complete set bf equations for this system is

Aj uj+ Bjvj+ Cjwj+ Ycjiwi+ aI  0

.J ~ ~ ~ ~ iJ

Bjuj+ D j 1j+ E w. + Yeji w i =0

A-
3

| ~Cju1 + Ejvj + Fjw + ) (c~ ui+e~ivi+ -j aX

-l -- S.7~w

1=1

i. 3 ' "- 0

i~l iJ -1 1, 3, 5 .... 3

the last two equations representing the two constraints. There are thus
2+ +I 3 (J+1)unows

3(3+1) equations and, including al and al, 2+ unknowns.
2 2

The system can be solved in the same manner as Equation [32]. How-

ever, it is highly complicated; moreover, because cj, and e.i are not

generally invariant when i and j are interchanged, the matrix of the co-

efficients ie not synimetric.

This situation can be greatly simplified if, as in the case of Equa-

tion [34], wo neglect al. cji, eji , and fji for which j and i are unequal.

Further i.rnplifications can also be made by neglecting 'i)e small quantity

t (1 -. v?) appearing in the coefficients B.i and C.. and .-I in tLhe second

term of F.. Equations [57] then reduce to
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"Aj uj + Bj 4- Cjwj + al 0

C j -+ Ej .... -+ Fj [j + a

J=l

J.Ji w3 0 o

J-I j - It 3# 5 .. ;

where

n
10 - 13 ...

,j=- V A 1 L i--).r,,lajA, n"(-I) - Z

2
JDj k-X=

12R

+ V r6 [112(1-_v2) (aj 1) + 4 vajt X]

The equations can be solved in a manner similar to that followed
in the solution of Equatidrs [35. From the first three equation, ,
is eliminated and the expressions

44



uj - Gj Gj

a, { CjDj - Bj j) x2 . (B3 - AjDj)
22 i

Gj

C, =- 2 2 V 0
_.j( Bj j _ _ J J Aj j) F j(A jD1 j

are obtained. When these are substituted into the last two of i xquations

[58] and rc and af are eliminated, the resulting buckling equation is

x(D J )]~~ Rj 2j[ ' T]]
'j-i T _G L j

_ . I -, +. __= J= l,. .. ...
_ [

By neglecting the small terms involving 4i, tho complexity of the expres-
lons is greatly reduced, and after some rearrangement, the equation

* ~ takA flu fn,.m

j 1, 3, 5 1 .

in which

LF n . l k )4  2"
h"A'.1(I + kI + k)1; 3j + 'ip 2j .i [2 y ( I -aj)] + I. i- 4"y k. zj I,. It

2 r j~ 2

SR k - v

+45
' = l +45



+ {kj (Z -y) + .1(v + kjI +Y)+ ajjj I~) k1+ '+ ZY]

The solution of Equation 161] can be accomplished graphically with the

same procedure dcescribed for Equation 191, Once again the lowest root

should occur between the first two asymptotes where. Q, and Q3vanish.

The accuracy of the result will depend, as before, on the size of J.

NUME~RICA L EXAMPLE

chined cylinder BR-4B having external rectangular stiffeners and which

io considered in the section on experimetntal work. Its dimensions in
inches are as follows:

R S. 8048
h 0-081

Lf= 4.266

d (frame depth) = 0. 570
b (frame width) = 0. 138

P = 6. 80

TI-e %jalve of 9 (6%.80)A i o considerably larger than that usually encountered

in pres~oure -vessel design.

Rings of Finite Rigidity

As a preliminary to the calculationo, Table 1 shows the firot 11 co-

efficients3 (ami) of the initial ideflections (;w and ai) as calculatcd by~ Equa-

tion [91]; rri is written with the absolute -,alue rign since-bt po.itive and

negative values ai-t permittedI. De 4pite the relatively Jarge value of ~



I iTable Z

JDei t -2 11 .i or s Com--rpzrison, of Approxim ate and
for Cvlindxz .BR-.~, M~.~atri Solutions for Cylinder

arn. AI. Buckling Pressure, psi

Equation [8] i Matrix Approxim- e

01 1.00000 I I 693z1* 693 -

1 0.84590 3 657.1 663
2 0.25538 646.3 654
3 0.06345 7 641.4 6484 .02099 9 638.7 645
5 0.00870 1 1 .636.9 642

6 0.00422 13 635.7 1Calculations
_ 152. 1 634°8 performed on

I. -- IBM- (09U0
8 0.00134 17 634.1 computer

9 0.00084 19 633.5 h*Slie rule

10 0.00055 21 633.1 calculations

II .003 iPressures for n= 11, 6

E=28.9 x 10 si

the convergence of a, is quite rapid. For purposes of calcula-
m= -0

tion, only the first four or five vaiues are signiifin . A- p;ov .. -

cated, the convergence wili'be more rapid for smaller values of .

It is of some interest to compare results of the matrix solution,

Equation [33], and the simplified solution, Equation [39]. The critical

buckling mode for both equations was found to be 11 . Table 2 shows

the buckling pressures according to these two solutions for successive

values of J. Since Equation [33] was solved using an IBM-7090 corn-

puter, results were readily obtain-a-ble for large values of J (an arbi-

trary li-mit of 21 was imposed). Solutions of Equation [39] were obtained

*Be/ore the calculations were begun, a preliminary estimate of the criu-
cal value of n was obtained from Figure 8 for the case of simple support.
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by slide rule up to J = I; it did K7VV77
not appear wvorthwhilc to continue - ,,

beyond this. __ _ - - . , ,

The information in Table 2 is %'' I

also shown graphically in ]Figure 10. . -

it is evident that the convergence of A \ K ._

little accuracy is gained in proceed-both solutions is fairly rapid so that - ._

ing beyond, say, J= 7. Such a con-

clusion, however, cannot be stated

generally. If the frames had been I
larger, the solutions would probably - a , , - L i
have converged more slowly. For
tFigure. 10 -.Variation in Approximatethis example it also appears that . adM ti Sou on wihJ "

and Matrix Solutions with 3
Equation [39] is 'a reasonably ac- for Cylinder BR-4B

curate approximation to Equation-

[33]* Furthermore, since the accuracy of the approximation deends

only on the rapidity of convergence of r am, one should expect closer

agreement for smaller values of P.
Equation [ 33] also permits the determination of the relative ampli-

tudes wj of the buckling modes. Table 3 lists the ratios wi/w 1 for n= 11

and J = 21. It will be noted that the components are of successively de-

creazing naagni-tude ad the _,first ____ m"-1~ 'Mi"_- -- t -rom

all the rest. The rotation of a frame w I XlI/R produced by the first corn-

ponent is thus partally reduced by the sum of the succeeding components.

i Simpe Support Conditions

Results of calculations for Cylinder BR-4B (p= 6. 80) with simple

supports replacing the rings are given in Table 4. The pressure and mode

obtained from the minimized curve: of Figures 8 and 9, representing Equa-

tions [431 and [441, compare well with the results for the umninirnized

Since rIquatior [ 39] does not contain the approximation in t&e linear
care, the ,esults of both equations should be identical for .'= I.
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IF
Equation [2.Corresponding results for *~e Von Mine:s solutionlso

fent modle. This difference reflects th,- influence. of the boundary con-

ditionso on the iliitial deformationo. Although for ibiii cane, the inclusion

of this effect gives riae to a lowor' Figure 9 Aino that thiu

prt~ssures will b c igher for P-4 4,

Ringoi of infinite Rigidity

Using Equaation [611, it shiould be possible to approach at3 closely

as desired the exact solution to the problem of fixed Oupport, consistent

with the approxmsations made in the derivatinn. of the equation. It may

be surprising, then, -to consider the results of calculations for CylinderIBR-4B given in Table 5. Equation [61] carried out to the eleventh degree

- -Tble - Thbl4 V~~n.
Relative Amplitudes of Buckling ftekling Pressures for Cylinder

Modeis for Cylinder BR-4B BR-4B with Simple Supports

-_with Finite Rings

j Equation [33] 1
-n= 11 J=21 Equation [42] 550 11

1 1.00000 Minjimied Form 1 1
(Figures 8 and 9)

3 -0.06654

5 -0.01962 Minimized Von Mines
SolutiOraI29 580 12

7 -0.00773 (Figures 8 and 9)

9 -0.00378 ___

11 0.0Z I Shell length assurned to be

13 0.00129 center -to-center frame spacing

15 -000085 
L 26in

17 -0.00058

19 0, 00042

Izi~ - 00031



Table 5

Buckling Pressures for Cylinder BRAB
with Infinitely Rigid Rings

Effect of Boundary P

Conditiors ornI  Theory n
initial Dr ftectio ns P 8.

Tqcluded

= . ... E quation [ 611 ] 11

Neglected Equation [61] 810 11

(3 - 2 1)

(am = 0)
Nash~ 804 12

In all cases. shell length was takn tA hm t'ii -n-v-
to-center franm opacinig (Lf 4 266 in.)

(3:21), gave a buckling pressure of 811 psi for n= 11, while the far sir-

pler equation* of Nash'5 gave 804 psi for n = 12. This latter equation is

.%LLI&A ~U An aU , a~

agreement with other mnore complicated solutions also obtained by Nash."6

The funtiamental characteristic of all of these solutions is that they are

based on the assvrne buckling config.ration

w=w [1 - coo [62\

Fh ZR2(iv) [1x + 2) 4i~

PC -(n -1) + +)

In all alculaion, tbo diatance between supports was taken to be the
,zent .c,-: iter fra e spacing (Lf = 4. 266 in.). .Freqoently, when for-

rmula of tfhlis type are applied to ring-stiffened cylindera, the inner crunaupportcd rietarie between frames is used.
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Thia function will not, in general, eatisfy the differential equations of

equilibrium. Rather it has been chosen somewhat arbitrarily because it

* satisfies the boundary conditions and is conveniently used with the energy

* method. When anplied tv -. L L -C-u -Ului-ons based on

this function have often predicted pre _ures much higher than those ob-

nerved. xpe.-Irentally. Consequently, one natural conclusion is that the

use of a different function could lead to lower pressures. While the re-

suIts in Table 5 are too limited t, warrant a'gercral conclusion, they in-

dicata that the configuration of Equation j6?] y in fact .be nearly correct

and that the difficulty actually lies in the assumption that full fixity can be

provided by rings of practical size.

It .is also worth noting that the convergence of Equation [ 61] was

much slower than for the other two cases previously discussed, This was
j

caused by the slow convergence of ! which necessitated carrying

the calculations out to LT=2i. From thie it may b. conclud Lha" Che itie

series (Equation (10]) is not well suited to the boundary conditions k1r

for example, to Equation [62], would probably result in more rapid con-

vergence.

Table 5 also shows that for the eeometrv In mnit n 4-1k "

=.-W.k ,, LnO nuai oI Sections had a negligible effect

on the collapse pressure. When tlis influence is neglected -(am = O), the

initial deflections are those for an infinitely long cylinder, the condition

assumed by Nash, and the buckling pressure is 810 psi. That the pres-

sure (804 psi) given by the Naoh equation is lower than this can probably

be explained by the fact that the buckling configuration assumed by Nash

does not completely satisfy the boundary conditions of Equation [47]. Be-

cause of certain a ,p ......... ariaing -on the use of a stress function

of the Donneli type, the circumferential buckling strain e0 does not van-

ish at the boundaries.*

I

*Following the procedure indicated in Appondix ., Nash eliminates u

and v through the uue of a stress function. Bacause w for this case is
of the form of Eqixation [62), the resulting stress function is
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In view of these results, it might be of interest to compare the buck-

ling configuration employed in the present analysis with that represented

by Equation [62] for this example on a quantitative basis. By suitable re-

* arrangement of Equations [58] through [611, an equation expressing the

relative -magnitude of the corresponding bu kling coefficients wj is ob-

tained.

[631I rj

where 2 _- _'k
2 T

rk= - k-  
-k j Jk ,,i.

Fw co nO coo
n 2+ X 2 0

in the notation of this report, anti t ,,- .

1 1 82F ve F~
E 9ex2  R2882

does not vanish at x 0 and x = Lf. However, if Equations [1221 of
Appendix E are molified so that

8 2 Fax =+ 1 (0)

Ox2

OZF

it is rhen possible to satisfy Ie. condildon on c, by proper adjustment of
the ftunctions f(O) and g(O). The resulting buckling pressure ia slightly
higher ihan that given by Nash.



and all quantitie P retA In the definitions of Eqnation [61] -An equivalent
of Equation [ 63] can be obtained for the buckling configuration of Nash

by expanding the fune tion*

W= -. 1 co 0 5 x !5Le

[64]
w W -w 0 iCos~~ Lf :5x :2Lf

in a Fouriar cries. Th"l-A result is

Xwj R

(65]
16w 0

Wij 2  3 ,3

In order to compare these results, calculations were carried out

wih h aid -nf [nL~Ati [ v3 thiii0ia1eipl hre & J
J 21, and pc 810 psi. The results appear in Table 6 in the form of

wjwtogether with the corresponding values from Equation [65]. Ratios
beyond i I I1 were not calctilateri. Tt will ho xaavi that theara i a eniie4ltP.

able cillerence in the individual coefficients. Apparently their total effect

in such that the difference in buckling pressures in insignificant.

SUMMARY AND CONCLUSIONS

1. An-analysin for the elastic buckling of ring-supported cylindrical

sjhells has been developed which considers the Inflaence of the rings on

deformrat~ions before and during buckling.

Z. The bending fitrenses associated with the prebuckling deformna-
tions have a negligile effect on the theoretical buckling strength.

*The function in Equation 164] is periodic in the interval 0 S-' x :5 ZLj
while Equation [623 repeats itself in each bay. However, their corres-
ponding buckling pressunres are identical.

53



Table 6

Comparison of Buckling Configurations for Cylinder
BR-4B with Infinitely Rigid Rings

wj/w 1T

Eqato 63.1* 651

(Na sh
35)

1 1.0000 1.0000

3 -0,1492 -0.2000

5 -0.0387 -0.0286

7 -0.0173 -.0.0095

9 -0.0085 -0.0045

11 -0.0047 -0 ^A2

*am =0; 3 21; n= l; Ipc= 810psi.

3. The buckling equations for a sheU with finite rings represented by

"the Atbilt detetminant, Equation [33], can be approximated with iood

accuracy by the single Equation [ 39].

4. A special result of the general analysis is the buckling equation

ior a shell with simple supports. This differs from the buckling equation

of Von Mises since It accounts for the effect of the boundary conditions on

the prebuckling deformations.

5. Anothe- special case is that for a shell with fully fixed edges. It

appears possible from numerical results that the use of the simplified

fom 1 .ccs I -CC 1 to represent the longitudinal buckling profile may be aLt.

reasonable approximation for this case,

6, The energy'approach has been used to obtain the trigoroxnetric

series equivalent of the solution of Pulos and Salerno for the initial axi-

symmetric deformations of a ring-stiffened cylinder. This form has cer.-

tain mathematical adva.ntages, particula-rly when employed in the solution

of buckling problems.
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oPA 'f II - EXPERDAMENT

EARLIER TESTS

Following the early work of Windenburg, 9 later experimental studies

at the Model Basin were directed toward the evaluation of classical buck-

ling theory for shor shells. Tests of ring-stiffened cylinders, designated

BR-1 3 0 and BR-5 3 1, which were fabricated from steel plate by welding and

not stress relieving, resulted in collapse pressures well below theoretii-

cal expectations. It was suppected that these discrepancies could be at-

tributed to weakening effects of imperfect circularity and residual rolling

and welding stresses. To investigate this suspicicn further, two additional

cylinders, BR-4 36 and BR-4A3 7 , were tested. These were identical in

geometry and in material properties, but BR-4 was rolled and welded

while BR-4A was machined from a stress-relieved thick cylinder. The

appearing between stiffeners. However, BR-4 collapsed at 390 psi where-

as BR-4A collapsed at 550 psi.

With the weakening effects of imperfections so clearly demonstrated,

it was evident that further attempts to obtain elastic buckling data with im-

perfect, fabricated cylinders would be fruitless. A better alternative ap-

peared to be the study of machined and initially stress-free cylinders.

This approach had already proven successful in experimental studies of

general in-tability. 4 , s , Accordingly, a third test cylinder, designated

BR-4B, was manufactured. Geometrically, this was a smaller scale ver-

sion of BR-4 and BR-4A, but it was machined from tubing of higher yield

strength.' With this combination of properties,-it was expected that col-

lapse would be initiated by elastic buckling."

DESCRIPTION OF TEST CYLINDER

BR-4B, whose dimensions were given as a numerical example ear-

lier in this report, was a 6/10-scale model of BR-4A. As shown in Fig-

ure 1I, it consisted of four central full-length bays and a short bay !at

each end terminated by a heavy bulkhead ring. One ring had evenly spaced

holes to accept bolts for a flat closure head. The four-bay arrangement
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was irttended to provide a central.

-_ J ft &LJL% _. 4_ _ test section free of end effects. The

cylinder was machined from a thick,

IL forged-steel tube which had been part

g I of a gun barrel liner. Compression
I tests of specimens taken froni the

tube prior to machininig indicated a
rI Ij-ZT yield strength of 82,500 psi (based

on an offset strain of 0.002) cory.-

S ..-- pared with 50,000 psi for BR-4 and

.BR-4A. The elastic limit was found

jto be 74,400 psi. Since the elastic

buckling strength of the cylinder

would be directly proportional to the

Figure 1 1 - Test Cylinder BR-4B modulus of elasticity of the material,

All dimensions in inches
determined accurately. For this ur-__

pose, a ring specimen was taken from one of the bul _head0 rigs a the on-

clusion of the tests. Measurements of the deflections of the ring under

diametral point loading were used to establish a modulus of 28.9 x 106 psi.

This procedure is described in Appendix F.

PRELIMINARY TEST

One of the objectives of the investigation wasto determine whether

any region in the area of failure had been stressed beyond the elastic limit

prior to collapse, Ideally this would indicate extensive strain-gage instru-

mentation of this critical, area, but to locate such an area prior to testing

is an impossibility. On the other hand, it was not practical toprovide each

bay with such externsive strain-.gage instrumunation that adequate coverage

of any area would be insured. Consequently, it was decided that a prelim..

inary test should be carried out in an effort to deLermine in which bay buck-

lIng would initiate. If this could be accomplished, the critical bay would

then be liberally instrumented annd second test carried out in which the

cylinder would be taken to collapse. An additional possibility was t.hat



nonlincar elasti strains would appear during the preliminkry test", and

would be of touch a mnagnitude that the buckling pressure could he predeter-

mined by means of the Southwell method, This procedure had been used

with considerable success in tests of cylinders collapsing by general in-

stability,"B but as yet had not been tried in the case of shell instability.

Since nonlinear strains were not observed in the test of BR-4A, it was not

expected that they would appear at preskiurs,.- below _540 psi, the higheot

pressure at which atrains were meaoure-d during that test.

The exterior of the cylinder wan in-itrurriented with electrical resis-

tance strain gages located circurnferentially at intervalm of 10 deg in the

middle of each of the four typical bays and extending complete1y around

the circumfierence. Temperature compensation was provided by "dummy"

gages. The test chamber was a 25OO-poi pressure tank, ZO in. in diame-

ter, and oil was used as the pressurizing fluid. Prior to the actual test,

the cylinder was immersed in the tank in a free-looding condition. The

pressure was then raised in increments to 500 psi and stridna moanrAe

to detect gage. that were undesirably "pressure -sensitive." Those which

"Mhibtd a'senstitivity of -5 ' d n. o r thore Aor 100 pal~ w-e-r-e'ccnidered

unsatiisfactory. These gages were thomn checked by observing the strain
t induced when local pressure was applied to the gage. It was found that

this procedure was an adequate substitute for the pressurizing method,

aru it wr used aubascquently asgages weesuccessively replaced and

checked until all were satisfactory,

The cylinder was then placed in the tank with one and closed by a

flat, circular plate and the other sealed against the tank top, which had

an opening to permit access to the interior of the cylinder. While atrains

f were read with automatic strain recorders, the pressure was applied in

small incrernents up t~o 570 psi. All otrains were still linaar at this prep-

sure, and it. :ppcared that proceeding to a highcr prebsure woud only in-

* creame the risk thiat the cyliinder woul~d collapse befort rnore extennsive in-

strumentation could be inn.t0_ied, The pressure wan, threfore, reduced

in incrernents back to zezo.

It wras apparent from the strain plobts that no ylkidiii-g had takt place.

The lalrgCet apparent permnanent aet fOr all operating gages vra~ 45 161-1. /iD.

which wa s conqidered insigroficant in a tot.1l strain of 1-500 tc, I~0 bO m. /in.,
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Table 7

Circumferential Strain Sensitivitie , (Exterior)
at Midbay, Preliminary Test

Compressive Strain Sensitivity in

micro-inches per inch per psi

Average
Maximum Minimum of All

Gages

1.91 2.52 2.74

Z Z.96 Z.40 ?.83
3 3.15 2.72 Z.,97
4 3o12 Z.79 Z.92

Theory of Reference 33: Sensitivity = 3. 03

and" probably due to the overall effect of pressure sensitivity and drift in
the nueasuring system. The strain sensitivities in micro-inches per inch

per pound per square inch observed during the tests are summarized in
Table 7. The average sensitivity was highest (2.97) in Day 3 and next
highest (Z. 9Z) in Bay 4. The maximum individual mensitivity was obrerved

at 90 deg in Pay 3. On the basis of these measurements, it appeaced that
Day 3 would be critical, but that Bay 4 would also deserve close attention.

Final instrumentation of the cylinder, carried out on the basis of these

observations, is described in the next section.

FINAL TEST

instrurnentation and Test Procedure

Gage locationa for the final ttt. i'e rshown in Figure 12. This time,
interior as well as t xtcrior gages were installed, the total number being
limited to the capacity of Lhe available automatic recoiex o. Most WA the

gagee were concentrat.=d in Bays 3 and 4 with rnajor emphas;i- on Bay 3.
The pairs of circumferential and longitudiual gages were sc arranged that
stresses could be neasured at the two j.oc-ttions (otitaide at midbay and
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Figure 12a Bays I and 2

I 1.I l i

Figure iZb - Bays 1 and 4

F'igur; 0 Z - Gage Locations for Final Test
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Table 8 inside at a frame) whcre they are

Loading Schedule for Final Test normally highest. The midbay ar-

Pressures (psi) at which rays of circumferential gages were

Strains Were Measured located in the four typical bays for

First Run Second Run the purpose ot detecting lobe paL-

- ... 06 .0 terns should they appear prior to0 570 0 610C

50 580 100 620 collapse. These measurements

16would be utilized in determining1- 00 590 2OO 630

00athe elastic buckling pressure by20- [ 0 600 300 Failure

1J300 610 400 (633) means of the Southwoll method. 38
13400 9670 400 (33)gae

The exterior circumferential gages
400 570 500 377
5located in Bay 3 along the 90-degi500 500 540 (Residual)
52..3.0560gena - -were Inten'd ed to give an520 300 560 s ,' ... .....

540 100 580 0 indication of the longitudinal pro-

I 6file of a lobe in the event one ap-L560 0 600
- peared. Since the highest strain

in the preliminary test was meas-

ured at 90 deg in Bay 3, this appeared to be a likely location for,.the devel-_._..r opment of a lobe trough. Gages were also m-,-ounted on the sides of Frame

4 to provide a meauure of any twisting and bending that might take place

prior to collapse. All exterior gages were examined for pressure sensi-

tivity and replaced in accordance with the procedure followed for the pre-

liminary test.

Two pressure runs were made during the final test, as indicated in

Table 8. On the first run, a maximum pressure of 610 psi was attained.

During the secnnd rian, collapse occurred suddenly at 633 psi, the last

strain readings having been made at 630 psi, and the pressure immediate-

ly dropped to a residual value of 377 psi.

Results aiiud Discusaion

Vieible damage to the cylinder, as showvn in Figure 13, was con-

fined to Bays -1 and 4 whexe a typical lobar pattern developed in the area of

heavie '3tintru-,mentation. While the lobes did not cor-pletely en.circle

tic circunference, a close exarination inclicaLed that a complete pattern

woul( lav,' contained I I lobes,
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Figure 13a -~Exterior View Figure 13b -fIterior View

Figure 13 -Viewn of Collapsed Cylindor BR-4B

During the first run, the strains were generally linear with pressure

upd 50aot 9 si ml deviations fromi linearity appeared at 600 psi,

portion of the run, the strain-pressure plots obtained during loading were

shit ws aproimaely50 Lin /i. Tereappeared to be no correlation
in general between zero shifts and departures from linearity observed

during the pressure run. As in the preliminary run, the shifts can beTattributed *to error in the meaauring sy&Lciem rather than to a significant

yielding of the material.

7 On the'second run, the deviationa from linearity again appeared at

600 psi and grew with pressure uintil, at 630 pei, a pronounced lobar Pat-

tern was evident. Such pattar&ns have often been observed is tiffened cyl-

in~ders prior to coll~apse by general instability.3 6 They are pxrodluced by

initial irnperfections vrhiih, even though nrinute in machined cylinderls.

have a decideid ettect n-ear the _point of bttckling. Y igure 14 showo sorne

ex~ample., of the -tsrair. pree.-orc plotp for both rinfi~. The circurnfermitial
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lobar strain patterfis in Bays 3 and 4 at 630 psi are shown in Figure 15,

For contrast, the strains at 500 psi are also shown. It will be seen that

the patterns in the two bays are staggered, just as are the final deforma-

tions in Figure 13, Although the strain patterns are not complete because

of a few gage failures, close inspection of both patterns indicates the ex-

istenue of 11 ltobes, It can also be sieen that, as anticipated, a lobe trough

developer1 at or near the 90-deg generator of 'Bay 3.

Fron. sftrain data of the type show:a in Figure 14, it was poasib.e to

obtain Southwell plots of fairly good qiiality, Plots for the. gages of Figure

14 appear in Figu,.'e U). With this roethod, the nonlinear component (e*)
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; Figure 15 -Circumferential Strain Patterns
Aa(Run 2. Final Test)

i of the total strain is determined and plotted against the ratio a* The

pp

! elastic buckling pressure is then obtained from the slope of the resulting
straight line plot. This was done for a number of midbay circumferential

gages located externally in Bays 3 and 4. The gages were selected on the

basis of data quality from .hose showing the largest deviations from line-

arity. Table 9 gives a summary of these results. It can be seen that the

pressures are all in good agreement. Furthermore, the average buckling

pre~osare of 637 psi iH very close to the experimental collapse pressure

,Since c* is positive or negative depending on the gage orientation,

"* I and I were used in Figure 16 so that all pointa would lie in the

first quadrant.
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] _Table 9I I j 1I
. .. ... Southwell Results from

- ""- l -- Circumferential Strains
ps at Midbay

o,o-. -, ...- -, (Run 2, Final Test)

, Angular PC
.- - Bay Location

-L 3 110 639

a 1a0 W_ No 4W01 4130 636

-160
o  634

212-1 1 ...!_,1800 643

- 90 638

1 1 L -leas

.. et3 1100"i! lO 634

• 180" . ..636

j • Average P. = 637

I I my , Gages selected on basis
0 0ao M 1W W of data quality from those

igue Tyil weshowing largest nonlinear

Figure 16 -Typical Southwell Plots strains.
for Exterior Circumferential

Strains at Midbay
(Run 2, Final Test)

of 633 psi.* However, it should be noted that accurate data could be ob-

tained only at pressures within 95 percent of collapse.

Thekse resuits are of some interest as they relate to the problem of

"snap -through" in thin cylindrical shells. The Southweli method is based

*In practice the Scouthwell method, when applicable, predicts a buckling
load slightly higher than Lhat actually attained. This is to be expected
since the method gives the elastic buckling load for a geornetrically per-
fect structure.
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Table 10

Maximum Stre.4es Measured during Final Run
(Bay4 at110deg. 630 Psi)l

Strees in psi

Stress Pulos-
x/L ritainMeasured Salerno

_____ ____ ____ ____Theory

1.,000 Long. Interior 72, 900

0. 943* Long. Interior 52, 100 47,500

0. 500 Circ. Exterior 74, 100 64, 800

Elastic Limit 74, 400 psi____

*Longitudina~l gage located as close to frame au possible,

on armall deflection theory and preadicts thkAe buckling load for the geurnut-
rically perfect structure. Hence, It should not give accurate results foxIthe basis of large deflection theory. in such cases, snap-through" occurs

at some load less than thm load predicted by small deflection theory. The
f Southwell reusilto, therefore, indicate that if "snap-th rough" took place, it

did not significantly affect the buckling strength.I It is also apparent that the failure, if not initially olastic, was so
nearly so that the collapse pressure wac not seriously affected by inelas-

tic behavior. Had this not been the case, the Southwell plots would have

been nonlinear and the elastic buckling pressure, though possibly obtain-~

able from- strains in the elaotic region, would not have agreed well with

the experim-ental collapse pressure.

In this regard, it is useful to examine the stresses dletermined frorm

straina ineasured in c,'itical area!?. The maxinnum stresses were Observed

in Bay 4 at 1 10 deg and are listed in Table 10 along with the correspondinig

values from the the,-ry of Pulos and Salerno,)-3 All stresses are for a pres-

Rnre of 630 -osi. The differencee between the ineasurements aind Lhe Calcu-

lations can be attributed to additional. bending ,Aresses which accorrnpanied

the lobar delforratickns. It uill be spen that none of the measured atreee
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Figure 17 -Distribution of Figure 18 - Theoretical an~d
Nonlinear Circumferential Experimental Distribution
Strain for Bay 3 at 630 psi of Linear Strain for Bay 3
along 90-deg Generator (Run 2, Final Test)

reached the elastic limit. l1&wever, it should be pointed out that the in-

terior longitudinal stress axactly at the juncture of frame arnd shell could

not be measured because the longitudinal gages were necessarily displaced

sl~ightly (0.057L) from the juncture to allow for the length of a gage ele-

mnent. The wkaximum &otreos rneasuxed at this neighboringu ne-ilt and ting

theoretical values for tbia region (Table 10) indicate that the elastic limnit

miay have; been exceede.d by the interior longitudinal -Itress in Bay 4 at I110

deg inmediarely adjacent t~o Frarne 5~. Becaxvie of the high stress gradi-

ent ini this region, a precise estirnate of this stress was not p~ossible, In

any a vcnt, it appears that wbate-ver yielding may have occurred wao very
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slight and highiy localized.

The circumferential gages i~ Bay 3, located along the 90-deg gener-

ator, provide some information regarding the longitudinal profile of a lobe,

Figure 17 shows a nondiniessional plot t*/ 4* versus x/Lf for a pres-

sure of 63a psi. As explained previously, &* is the nonlinear or lobar

cornponent of the total *train, ** is the value of c* at midbay, and x Is

the distance measured from the center of Fram~e 3. Also abow-n is a aire-

wave distribution such a# would exist in the case of simple support. The

departure of the 0'vrimopintal points fracn this sine wave Inadicates to somne

etent the influaence of the rotational restraint og the buckling configura-

tion. Undoubtedly, experimental error is reoponsible for some of the

deviations. Strains measured oni Framne 4 in this region showed some

evidence of asymmetric deformations, but the strain variations were not

large enough for the determination of a well-defined pattern.

Strains measured in Bay 3 also provided an opportunity for further

evaluation of the axisymmetric stream analysis of Pubos ana hlerno$3 in

the linear range. Figure 1 S compareB the theoretical distributionwith

measured acruss Bay 3 at 90 dog. Agreement between theory and exper-
iment, it will be seen, was generally good.

COMPARISON WITH PREVIOUS TESTS

Table 11 summarle the test results of Cylinder BR-4B and the
earlier results for Cylinders BR-4 and BR-4A, The cylinders were geo-

metrically similar but differed in their yield strengths. The table in-

cludes pxessures given by Formula [ 92A) of Von Banden and afinther,3

at which the exterior circumferential stress at rnidbay reaches the yield

value. Since this pressure for BR-A and BR-4A was lee than the elastic

buckling priessure givex by Equation j -33-], it Ix clear that bcoth of these

failures were initially inelastic, Use of rntch higher atrongth steel in the

case of 13R-4B rcaulted in a yield pressure well above the eliastic buck.-

ling pressure and in a mode cof collapte which appears to have beein i-



Table I1I

Experimental Results Compared with Previous Tests

I ---- F - -I
Cylinder Number I BR-4 j BR--4A BR-4B

IFbrication Welded Machined Machined

o . psi* 50, 000 50, 000 82, 500

Von Sandeza
4. and Gfinther 494 j 494 j 815
04 uaJ [92A]3)2

' ~4Equation [ 331 3 1I

*Experiment 390(10) 550(10-11) 63(1

*~Based on an offset strain of 0.002.

"Nu.,mber of lobes in parantheses.
Dimensions and Young's Modulus (28.9 x 106 ps i)
- a~md-datial~o the three- eVyi!Ier ...

SUMMARY AND CONCLUSIONS

1. The test Cylinder BR-4B collapsed at 633 psi in an asymmetric

shell buckling mode characterized by I11 circumferential lobes.* On the

basis of strain; measurements, it is concluded that the collapse was

Initiated by elastic buckling.

2. The Southwell method can be an effective means of determining

nondestructively the elastic buckling strength of short shells. It is likely

to be accurate on ly -where imperfections and residual stress 'es are small,
as in the case of machined cylindero, and only where it is possible to ap-

proach very clo sely the elastic buickling pregaure. Hence, ite practical-

ityj as a nondestrutctive tachniqie m-ty be r-ather limite~d for this rnodc of

buckling.
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PART II EVALUATION OF B~UCKLINThG THEORY

COMPARISON OF THEORY WITH EXPERIMENT

According to the theory developed in this report (Equation [33]),

buckling for Cylinder BR-4B occurs at 633 psi in a configuration of I1I

circumferential lobes, which is in exact agratement with the test reeulIts.

Such agreement its, of course, better than one has any right to expect,

even for the most rigorous theory imaginable. The present theory- makes

use of several approximations; moreover, its accuracy depends ont the uni-

formity of the test cylinder and the accuracy with which its properties can

be determined. The shell thicknesp, for example, must necessarily be

represented by an average of many measurements, all subject to error.

The determination of Young'. modulus required a separate test which uti-

limed~ the response of a ring to diametral loading. While this method is

believed Veiiable, it is still subject to experimental error,' and no claim

is madte that it 1s the best that could have been used. Other techniques,

a a' ~lV*i use6 Op itCa1 Itt ft~ifii eaure a-i' repneo

a specimen under direct stress, are highly regarded. Because perfect

F isotropy Is never aochieved, methods which employ different conditiona of

stress cannot be expected to yield identical results.
In view of these uncertainties, the degree of correlation of theory

with experiment can be regarded with some suspicion, but the results are,I nevertheless, substantial evidence of the validity of the theory.
The test of BR-4B is considered successful as a demonstration of

the phernmenon of elasti~c buckling, but it is now. an ideal example of the

influence bf stiffening rings on sholl. bucklinig strength. The buckling pres-

mure was only slightly greater than that 1600 paj*) given by the theory of

Von Mises (Equation [461) fir the case of shimple supports. This is a

*Trhis figuLire is obtaiid un the batiis chat buckling is conf-ned to the
unsupported length (L) of shell plating. Ift the full frarne nuacing (1,r)
is used. tle. reultiiug preisewure ib _58 psi, as indicated in Table 4.
Still less Is te preooare (550 psi) givei by Eq-tation [42], whicnh-n-
cludea the effect of the boundary coniditions on the initial deflections.
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natural consequence of the large value of P (6. 80) used in an effort to

obtain an elastic failure. Nevertheless, the test did demonstrate that

the Von Mises pressure can be exceeded.

Fortunately, since the test of BR-4B, other results have become

available that provide better data regarding the influence of stiffening

rings. Theve have been selected from tests of a number of machined

steel cylinders, 8 in. in diameter, most of which were recently reported. 3

The cylinders in many cases had more typical bays than did BR-4B, but

there is no indication that the extra length had any influence on collapse

other than to isolate the central bays from end effects. In all cases,

fallurem were of the interframe variety, but in only a few was there evi-

dence of elastic buckling. Since none of them was instrumented for the

specific purpose of detecting an elastic failure, the cases cited here were

selected by comparing pc the critical buckling pressure according to

Equation [ 331, with an estimated yield pres sure py given by Von Sanden

and Ginther Formula [92A] ." The pressure py is that at which the ex-

tenior circumferential stress at rnidbay reaches the yield value defined

at an off#set s train of 10. 002. When Py exceeds pthe posisibi-lity of elas--

tic buckling exists. It pC exceeds py, the faiiure must be inelastic. On

this basis, three of the cylinders were in the elastic category. Their prop-

orties and those of BR-4B are listed in Table 12. Since modulus incam-

urements for the small cylinders were not available, a nominal value of

30 x 106 psi was asoumed. The collapse pressures, both experimental

and theoretical, for the four cylinders appear in Table 13.

The influence of the framess is clearly seen by comparing the Von

Mises pressures in the table with the experimental results. The additional

strength provided by the frames (as much as 22 percent) results prima-

rily f rum the fact that for each of the small cylinders, P3 was cona de rably

les3s than for BR-.4B. Evidently the present theory adequately accounts

for this effect. In each rase, the pressure given by Equation 1 331 agrees

woll with the experimental pressure. Theac results are also presented

graphicallY in Figure 19. The abscissa i~s in3/p znd the ordinate ).s Che

r.Aio ot pf;, tho experimental failurte pr~esure, to p. The 415-deg line

drawmn. on the figcire represjents p(erfect aagrcmnent between theory and

experimnent. If pC/P is icsstg tha~n unity (indicajted by the dotted line),
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_ _ _elastic buckling is expected. It will

P,'.,. . - be seen that the four cases of Table

- - 13 all fall within this region and the

Iplotted points all lie close to the 45-

d e g !!h e . S o c -.. o f th - e b th r t z -Lg

__ reported in Reference 39 are also
A ,. i -. plotted in the figur 'along with the

OR U-2test of BR-,A. In all of these cases,

oi-pc/P- exceeds unity, so that the

al -_ F -- 7 points are outside the elastic region

j and, as expected, all lie below the
°I I 0, 0. 1. 1 1, 1 1.3 1, A t t.., IA-

Dl 45-dog line.

e 19 E These results indicate that the
Figure 19 - Experimental and performances of the four cylindersi Theoretical Results

-have been satisfactorily explained

using small-deflection theory, and are consistent with earlier remarks

regarding the application of the Southwxll ri-ethod for the case of ,,R-4R

u indicate.that the od frthease o ,.

fact, precipitated by a "snap-through" mode of instability, That this phe-

nomenon can occur in cylindrical shells under hydrostatic pressure has

been demonstrated experimentally by Kirstein and Wenk, 2 1 and theoretical-

Sly by the large deflection analyses of Donnell,1 7 , 18 Langhaar and Boresi, 19

and Kempner and Crouzet-Pascal,2 0 among others. However, these studies

have also shown that the pressure at which "snap-through" takes place is

not much less than the pressure given by small-deflection theory even in

the presence of imperfections.* For machined shells, this pressure dif-

ference might be too small to be detectable.

Table 13 also shows that according to the solution of Von Sanden and

Tolke, 12 the pressures reflect some strengthening due to the presence of

AF the frarmes, but still fall short of experiment. This is to be expected since

*This is in marked contrast to the behavior nf cylindrica! shells under

axial comnpr~esion or torsion where the pressure difference can be very
large.
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the analysis considers the effect of the frames on the prebuckling defor-

mations but fails to account for the restraint which they provide during

buckling. On the other hand, the ashl .s - D,1" -fo a ,-AE1, ... , u11 ixity35

grpatly ovr.timatFR thp Atrnogth qrftiii11%r rP'ki 7, P in P;rh raRo; nR the

table indicates. This ahould be interpreted not as a refutation of the solu-

tion, but rather as evidence of its inapplicability for the cases considered.

It is possible, as has already been indicated, that the analysis may be

quite accurate in cases where complete fixity is actually attained.

Finally, it should be said that the experimental results reported

here, though meager, are all of which the author is aware. Unfortunately,

there are no data for internally framed cylinders, and none are apt to be

forthcoming because of the machining probTems presented by internal

frames.

While no future studies in the area of elasti shell instability are

contemplated, should additional experimental data become available, they.

will be examined with interest.

CONCLUSIONS

1. The small deflection theory of this report predicts with accuracy
-the elastic buckling of cylindrical shells supported by closely spa4.ed ring

stiffeners, at least where stiffeners are external and P is greater than

4.0. Because of the restraint provided by the rings, the buckling strength

can be considerably greater than that expected for a shell with simple

support.

2. The solution of Von Sanden and Tilke is conservative in all cases

because it at.counts only partially for the strengthening influence of the

stiffeners.
3. The fact thAt the Nash analysis .or a shell with clamped edges

greatly overestimates the buckling strength of ring-supported shells does

not necessarily indicate the use of an unrealistic buckling shape in the

analysis. It is more likely that the disparity exists chiefly because frames

of practical size do not provide restraint comparable to complete fixity.

4. Since the Von Mises analysis is based on the assumptions that the
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shell is unsupported prior to buckling and simply supported during buck-

ling, it can be highly inaccurate in predicting buckling pressures for i-

stiffened shells. Nevertheless, it is probably the most practical means

for estirnatincr elastic buckling strenvth h~i1aR it in Alnv

and can be representedI in ~a very sin-ple form.
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APPENDIX A

STRAIN ENERGY OF THE SHELL

In the development which follows, basic strain-displacement rela-

tions are obtained with accuracy preserved through quadratic terms in

the displacements. The strain energy integral of the shell is then formu-

lated with displacement terms maintained through the third order.

We consider an element situated within the thicknecis of the shell

at a radius r and having axial and angular coordinates . and 0. The

element undergoes displacements u', v', and w1 in the axial, tangential,

and radial directions, respectively, with w' taken as positive outward.

IFT We will assurr . that the atrain in the radial direction is negligible so

that only deformations within the plane of the element need be considered.

Novozhilov40 describes these deformations in terms of strain components

which will be designated txx, teo, and txO for cylindrical coordinates.

They are related to the dispiacements as follows:

v 1 12

+-- + r661
'xO =v Ux+-gl~ ()z + r.oo ~+ - ,10

~~+__+ U, '+w
xO =X x r r rx

where the subscripts on u', v', and w' indicate differentiation. In order

&o calculate strain energy, it is necessary to consider strains of line ele-

ments that lie along mutually perpendicular axes - in this case the x and

0 coordinate lines. Thoc strains, according to Novozhilov, 40 can be ex-

pressed in terms of the strain components by

e.x  1+Zx - i

[67
77f 1+ , - I
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sin- [67]
xo= ( + 2 xx) (I + 2 '10o) continued

w and re unit strains in the x and ^ directions and ex A
%,here e x  an 0  a c -V A....

the shear strain expressing the cha,,ge in the angle between the coordinate

lines. By combining Equations [66] and [67] and discarding all displace-

rneht- t;, ms of order higher than quadratic, one obtains

e - ux, + (VX + WX 4)

eo = .. + 1
00

r + r

U 0  4

r r r

It may be surprising to note that retention of only linear terms in the

strain components, as was apparently done by Langhaar and Borel, 19

leads to a slightly more complicated result.*

To relate the displacements u , v', w' at any point to the displace-

men~s u, v, w at the middle surface of the shell, it is useful to employ

relations developed by Langhaar and Bureui.

U' = 11 z ,

v V + zw [69]

W' = w+ zy

*In that case, the t are identical with the corresponding etrail

components. However, the difference between Equations [66] and f 68]
ia probably of little practical significance.
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where

w - V

w2  (-

where R is the radius to the middle surface of the shell and z is the

thickness coordinate measured positive outward from the middle surface

of the shell. Equations [ 691 are based on the asiumption of K.rcboff that

norinal- to the undeformed middle surface remain normal, straight, and

unextended after deformation, By combining Equations [ 66] and [691
a"fIer suitablo differentiation# the-remsitng -equations- a"--

e-0 : vR + (V + wx) + (N V"Ux~ 1 R w+

+ -A XX +2 uxw_ " Rx  N x+ M x x +  Ux + Nx0 + wz

z 0 No)
+D RuM + N Lg + Me0 Nv +- M F N

2 R

22

W 2
+ ___.)z 2 () N (701

2 ZR

it 0  zU 0 M

R + xR/+wxN -ux x N- +  2X0 Wx

Rxe V+ +)(R 7I
Rx XX R R'

+ uowx+ u.w., +RMx N +R MNX + N, v.+ N v, + w-, N

+ R u_ N~ + + W X0) -R N. + w I Na)
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where
ve +W

M 0

R

WA -V
N -

R

In obtaining Equations [70], it was assumed that r could be replaced by

R with negligible loss of accuracy. A further simplification can be made

.in ej3by neglecting z/R in comparison to unity. Then

uM
-e Z (RRN we)+w. " vx -R [71]

(ZXGX UWXX+ UXW e + RM N+RMN +NOV

+ N vx e + ux N + N, w  M)"Z (' w. N. . O
+N +R N _R + w. R-z+Wee

In formulating the expression for the sitrain energy of the shell, it

will be assmned that the stress in the radial direction ib zero. According

to Langhaar and Boresi,19 the shell energy U s can then be expressed by

Z(.v);X zf .LZ

where E is Young's modulus and h is the shell thickness. After combin-

ing Equations [70] and [?'1 ]with Equation [ 7U], performing the Integra-

tion on z, and discarding terms higher than the third order, one obtains:

E+2v2 J ,v a + N ' 2I

z0 x 0 h
N+ 2O) +r 22 ~~- ~

0 80



+~ ~ ' f"22  {Nw~iuj 2 w., (Nv, +u '
24R ~ X 0I-2 R~x x+UW)W

r1 Iuewx +MeN+MNo~~

+ ~ ~ ~ ~ 2 2  
- -x)I o+MwO-ZN

2R0 N w + Rw)+ 1v,+XX ~00 XX +M N+M 2 +T~~~X)

R+N (Nvx+ uxx w +RMxN+RMN +, V~ + (NX +w

"I
x x( I t O) ( X+weZUOW
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APPENDIX B

STRAIN ENERGY OF RINGS

The strain energy of a ring will be considered as the sum of three

quantities: Ulp, the energy due to deformations in the plane of curva-

ture; Uop, the er "rgy of deformations perpendicular to the plane of

curvature; and UTOR, he energy due to torsion about an axis parallel

to the 0-coordinate line. Thus, the strain energy of a king is

f Uf Uip + Uop+UTR [74]

In this equation, the energy associated with restricted warping as well as

that due to extensions of the ring in the z and x directions has been neg-

lected.

Ui is simply the energy associated with the circumferential strain,
1PI

Uzp J (e) (R+e)dAf d [75]
Ip 2 A f o x~=iLg 75

where A1 is the cross-sectional area of a ring situated at a distance iL1

...... .. ....rgn From ppndiv A, Equation (68] is

, %+ w, w2 2,

R ~ [76]R e + =Re +'_ R4 e#

when the approximation is made that r can be replaced by R+ e. 'Refer-

ring to Figure 3, e is the distance between the middle surface of the shell

and the center of gravity of the ring cross section. When substitutions

from Equation [69] of Appendix. A are made, Equation [76] becomes

L2

V(N M )N N' + [R R R+eNR+e R (R+e) RR

W . 77

+M N4 MN 0  - + ( R ... (N ++ N +7z]
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After this expression is substituted in Equation [75] and terms higher

than the third order are discarded, one oltains

ER
2  f 2 0

+_L2M No+U0I + e +M M N + MN e ---x
+R( R R (R+ e)U Wx 0

22
Z e [2MrNx uew .---. x

N2 * 2 U 2 RMA (W N2)
2 R+eJA R+8 ( 2  I Re X0*

.2

NV R(Re)u wXe + Me N+ MN W

+ NI H dA 
[78]

2 R+e "Jd

Before integrating over the area Ag, it is helpfal to make use of the fol-

JA zdAf = eAr
[79]

A zZ dA
f = 1xG + Afe z

f

IxG is the moment of inertia about an axis normal to the area Af at its

center of gravity. UIp can then be written:

tjp ER A2  2 7f 2ui ) ( C [ N2  MZ - o u wxIP (R+e) ' 2 R

+ -- N-- + + )N- ZN+ M u0
R (R+e) 2 2 [80]R/JJ

+1 + E2- +k1 N- " -

84A

I~fR + e 0 01 [80



According to fundamental beam theory, the out-of-plane bending energy
is

EI2G Xr(R+e)dO [811

where IzG is the moment of inertia of the ring about an axis parallel to

the z-coordinate through its center of gravity and, according to Reference

34,

X (O x iL [82]
R+e . - e. j

UG is the axial displacement of the centroid of the ring; is the rotation

of the ring in the x-z plane as defined in Equation [69] of Appendix A.

Because each ring Is assumed to 'ndergo no strain in the axial direction,

S.V.P .-- V"

With z replaced by e in Equation [69] of Appendix A, it follows that

i1 ]SUG60 1u., + elwx89 + Vx00 N+ 2 v.,e + v xN00)] x=t U

{Y
X " .wx+ vx+ + "6 ++elwxe +vxeeNiR+e R+e

+ 2 Vx No + VxNe)

Combining Equations [81] and [84] and discarding terms higher than the
thivrd order r-e obtains

E~z %o ) Wxord - Zw ~
OP 2 (R+e) : w .+(e +

\(-e f .R--jjxVxN xN VxNOO)f dO

fx5= i f
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According to Reference 34, the torsional energy is expressed by

UEK 0Z (R +e) dO86
UTOR 4(1v) [86

where .0 is the angle of twist per unit of circumference and K is the tor-

sion constant. For example,~ in the case of a rectangular ring where the

depth d is much greater than the width b, K is given by 3 db3 When an

open section is comprised of several narrow rectangles, K for the sectionI4
is given approximately by th-e sum of the values K for each part.4 1 Refer-.
ence 42 gives values of K for rectangle s-where d does not greatly exceed

b. Reference 34 defines the angle of twist as

T[ 0)lL -~87]

After appropriate susiuinti eoe

and the torsional energy in

2 7r
UTOR fI r( o~ + O

4(l+v)(R+e) 3 J L

aR (Rwxo + uo)(vxo N + V NO)l dO
x= iL1

with terms above third order discarded.
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APPENDIX C

POTENTIAL OF THE EXTERNAL LOADS

.L~.-C.~ iUiuiie 1 y ihe external loads is defined as ttie product ot the

pressure and the change in volun~e undergone by the cylinder during defor-

mnation, or

W =p(V'-- V) 190]

where V and V' are the volumes before and after deformation, respec-

tively. The volume bounded by an element of the deformed shell is defined

dV' =dA'dlt' [91]

where A' is the area enclosed by the median surface of the sholl in the

R - 0 plane, and di'- is- the length of the element measured in the -. direrztion.

w~we v4*Y9Ijq

V+~d

I X1

V I
6 1 d/

Figure ZO0 Deflected Flernerit of Shell



R' R'

dA' --- (O - 1) [92]
2 1

dl' -x Z - x1

The coordinates can be expressed as follows:

R= [(R + w)2 + vZ]

R = [(R+w+w e do ) +(v +v edo). ]

o _ 8 + V [93]

V +V do
0 01 + dO+ R

When quantities above the second order are neglected,

dA' A R+w)2 + v0 (R+w)+v(v+w) [94]2"

and

S R (X ( v + Zw+ Ru- + 2w u+ vu-

J o [951
1 (w 2  Vo v w dxde

1 21

But, since V + - (vo w + VwoVe) dO vam;i-h- ,-eca, ofs coni,-ti.- -y
joR

therefore

ER 2 2 W U ' U' 2:

I(2w+ Ru+ 2WU+ vu'+ dxdO [961
3CR
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V, APPENDIX D

INFINITE SERIES FORMULATION OF THE INITIAL DEFLECT-TONS

cal shell under external pressure were first analyzed by Von Sanden and

t Giinther. 3z This work was later extended by Pulos and Salerno t' include
the nonlinear or "beam-column" effect of the axial load. To express the

deflections in the form of a trigonometric scries it would, therefore, be

possible to perform a straightforward Fourier expansion of either of these

closed form solutions. An alternative approach, however, is favored here

since it leads quite simply to the desired result directly from the equa-

tions of equilibrium with no dependence upon prior solutions.

The axisyrnznetric deformations of the cylinder are described as

follows:

. . .

(x)

I with the added condition that w* vanishes at a frame. Refeyiring to Equa-

tion [21 then, we have for the initial total potential,

L-., .. ,m -- 2
z(]- ,h ) foJ z Rz

r~ aJZ 7 N + -i!+ 2v V 1 + iw +-1 dx d6
2(1-v-) J0  J0 R7 AR % J% ZR I

Eh 3  R 47_Zddi + wxdxde + ( v d

24R1.(v ) o Zo (R+e) j

z 
R

0

Products of hj with third-order terms in the displacements have been neg-

lected in this equation. Becauise deformations in each bay are identical,

it is only necessary to carry out the integration on x from 0 to Lf.
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Tntograinion with respect to 8 can, of course, be eliminated because of

axial symmetry.

U we consider the depenlent variables to be Ux and then one of
R

the equations which resuits from equating the iirst variation uo uT LO

zero is

= (_- + v h -v -w [99]

By making this substitution in Equation ( 98]. retaining only linear and

quadratic terms in w and its, derivatives, and neglecting.products of p2

with w, one. obtains

T EhR ff -Z Eh3 R f - EA_ 2
--- I d. + w dx +( )

z R2  04(lv2 ) Z(R+e) .

2 - j 00]L

-(Z V)+ Dj.20) dx + 8Eh (I v 2 )L

w is now taken to be

' Y m' coo =(2o + 2 Zn cos( [101]

M- -M m=1

where Xm is mR When this series is substituted into Equation [100]

and the integration is performed

EhCC -Z [ +) - - W

' ... ,R-- Wm + 12Ra.v2 2 (R+e) ['a
ITI- ~ ~ -M "- = -CD

[ioz]

2 (Z v) w° pLf w G - V + - V) Lf
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The equations of equilibrium are obtained 'by minimizing with respect to

the Wm 'S

ail "h T, r, A "P T-- 2 v ( -V
-W - w - -v)pLf (1.-v) 0 =O

a 0 lV R"9+e 4 ~ 203

UrEh~i l4Jf4 EA( Y

BU j=- 7~ )4[04
h 3 l1 + 4  103] + pLf v (2X - I + 2Z }  0R nR f

W€ M ..... [ 104]

where is Subtracting Equation [104] from Equation [103]R 2 hZ

yields

I + R 22 4 v

Eli
j o [105]

I
pR 2 (2 - v)

1+ 4 Pr)4,+ E X2i

pR.
when - is negligible compared with unity and 2X >> 12V. SummingEh

the w's we obtain:

pR2

m= -CD m=-LO I+ 4 + k-

p ( - [1061
+ Eh



W is then determined by com~bining Equations [103) and iOU].0 -P

-pR
2

wo =- (Z - v)( -)
0 2Eh

Lh [107]

Af R m= -C

m 1+4( + .. t

a can be put in a more convenient form as follows: If anunstiffened cylin-

der were to buckle in the axisyrnmetric configuration w- = am con R

the corresponding buckling pressure pr would be given by

--4L

m 2 1v 2 )

This equation a!qo applies in the case of a long cylinder under end thrust

where the length of a complete adal buckling wave is equal to L /m. if

Equations [107] and [ 108] are coibi .w., we find that

1

am = [09]

[14 4(! !J1- p=.

From Equations [105] and [107]. we have

pR 2

- ml
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f M= -CD

since a0 equals unity. The combination of Equations (110] and [99]

gives

VI. V) ra ,I

-x -ZEhL hAg:Bf "' aR
mrl -OD

wif quadratic terms in p are neglected.

One consequence of Equation [I10) ]isa a condition for axisymmetric
buckling. It can be seen that iv' will increase withou t limit should 1/,n
approach zero. The governing condition then Is

I - So long an Aj > 0, 'this conctition Can be met only when p > pm, for one orImore values of mn. If Af= 0, Equati on [(112] i a sati slied when p pm.

This 4-s to be expected since Equation [(108] holds only for buckling of anIunatiffened cylinder.* In that case the expression in Equation [110] for
4v becomnes Indeterminate,

for purposes of compa rison, the closed-form solution of Pulas and---
Salerno33 for 'v_ can be written as follows:

£ 2  
-V) 1~ [113]

ZEh fr~)1~1+)~C3
f I I+

*It should be emphasized that the buckling configurations mentioned
here are all of a single class characterized by symmetry aboult a frame
aRnd need not correspond to the riimurro buckling pressure. Configura-
tions of the nonsymmetric class; perrnit.ng frame rotation, can result
in lower pressures, depending on th, geninetry of the cylinder.
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where

f(x) = 1I [coshKlx sinK 2 (L - x) + coshKI (L-x) sinK 2 x ]

+ tZ sinhKx cos (, L-x) + sinh KL x)cosM 2 xj

2- ijiZLf [ coshKIL- cosKL 1
G

PL jpsinh KL + ji sin K LJ

K --- ; K =--

K, i Lf Li

'l~ ~ E '' ; '

where L is the inner, or unsupported, frame spacing and b is the faying

width of a frame. If b in neglected, L equals Lf and Equations [ 110]

and 1113] should be equivalent. Equating these two expressions at x - 0,

we find that

mm®r=- [I+ 4 (~)h

PPM [1141

_____ I~~?sinh ilP + p. sn. 2

2 I I I2 cosh I [t cosp., 3

and
2X x~

Z {1 m=- am coo

ZEh Lfh1i + I

Af R
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Combining Equations [113] and [115] yields t ,ie additional result:

j The principal reason for introducing the Pulos and Salerno solution

j was to provide the alternative means (Equation [ 114]) when~needed for

copuin Z am. Graphs of the function G can be found in Reference

33 where it is designated IF, -for p < p* and IF for p > p*. In cases

where p << p*, it follows from Equation (108] that p <<pm Theii Equa-

tion (114] reduces to

- ih [117]

4 -_ ----

For purposes of buckling calculations, tj~s latter equation is usually suf-

ficient. Furthermore, it is often an. simple to work with tie series formj since, except for large values of 3,convergence is quite rapid.1 Usually

only three or four termse will provide good accuracy.

hI

tUising a COMPZ~rison test with the convergent series ~- n
rn=l M2

can easily ahow that the sierico (Equation [I1171) convergyes for all finite
valueICs Of

9-5
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APPENDIX E

STRESS FUNCTION

The energy expression in Equation [5] is extremely unwieldy as it

stands. It can be greatly simplified if u and v can be somehow eliminated.

To do this, use will be made of a stress function following the method of

Donnell.43

The strain-displacement relations with only linear terms retained

are

" 8u

1 (. 8v [118]
• e  = .W + 2 8

8 v + I 8u
e a x R 00

26 2 ex 2 ,xe 92

•R8

~2 + z~9~ 0 [1191e x. R 2 802 R Ox 80 ax,

But, from the fundamental definitions of plane strain

e. =-(ao" v x) [1z0]

exo = xO

where a., Cro and (7,8 are, respectively, the axial, circumferential,

and shear stresses. Combining Equations [119] and [120] we find

[;.) Rz .z R ' 10 ax -
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VI.. The wtress function F is defined as follows:
.:

i~R 802

8 2F

a0  82 F~z

X0 R ax ae

Equation [12 1 now bec omaes

V4F -E az* 0 [123]
R 9x2

.here 74 inelira es the operator" +4  +a  4 ...

" n ew has b e specified, F ' is detertn n- r m E ua i n[ Z 1 n
u and v are obtained from F -

ex V (R BeF 2 O 8z

'112l4]
AVB R 982 r s2 r
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APPENDIX F

DETERMINATION OF THE MODULUS OF ELASTICITY
FOR CYLINDER BR-4B

r Young's modulus for the test cylinder was determined by measuring

the deflections under concentrated loading of a ring taken from one end of

the cylinder. Although not in common practice, this method has certain

advantages. One is that relatively large elastic deflections can be pro-

duced which are easier to measure accurately than, for example, strains

in an axially stressed rod. Another advantage is that a larger, and there-

fore more representative, specimen of the cylinder can be used.

After the test of BR-4B had beer, completed, the bulkhead ring near-

eat the damaged portion (Figui'e 13) was cut from the cylinder and ma-

chined to the following dimensions:

Mean radius (R) 8. 196 in.

D 0 DPth (d) = 0: 3505 in.

The ring was placed vertically .between the heads of a universal tosting

rmachine and was set in position by an initial compressive load of 50 lb.

The load was then increased in 50-lb increments up to 350 11 -7hile the

shortening, of "Ae vertical diameter of the ring was measured with a dial

indicator, The ring was unloaded in the same manner. Two such runs

were made and, in each case, measurenents during loading at Unload-

ing agreed within 0. 00Z in. The results of the tert are shown graphically
i in F;'i£t,A 21! i

According to Reference 44, for a ring of rectangular cross section,

the change A in the diameter produced by the load P can be expressed.

as follows:

A= - C- 7 1 ++(T7JEbdc R 4 R R

[ ii +z-i-]

12K 15 ~RI

299
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Figure 21 - Determination of Youngs Modulus for BR-4B

(Response of Ring to Diametral Loading)

The equation is applicable to thick rings and accounts for direct and

shear stresses as well as bending ef±ects. For the ring in question, the

result is

E 2. 88 x 104 P  [1261

From the slopes of the plots of Figure 21, the values for E in pounds per

square inch were 28.8 x06 an d 29.0 x10 . An average value of 28.9 x106

psi was thereby determined.
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